Zeitschriftenartikel zum Thema „Aphididae Genetics“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Aphididae Genetics.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Aphididae Genetics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Görür, G., H. Akyildirim, G. Olcabey und B. Akyurek. „The aphid fauna of Turkey: An updated checklist“. Archives of Biological Sciences 64, Nr. 2 (2012): 675–92. http://dx.doi.org/10.2298/abs1202675g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This study provides a comprehensive list of Turkey aphid fauna (Hemiptera: Aphididea). A total of 466 species and 12 subspecies belonging to 141 genera and 13 tribes, are listed. The list includes all records from 1903 to 2011. The family of Aphididae comprise the highest number of species (457), followed by Adelgidae (6) and Phylloxeridae (3), respectively. Inside Aphididae, the tribe of Macrosiphini is the richest group with 197 species, whereas the tribe of Cinarini has only one species. The number of aphid species actually reported for Turkey is lower than recorded for neighboring countries, suggesting that further faunistic studies needs to improve informations on this topic.
2

Liu, Tongyi, Jing Chen, Liyun Jiang und Gexia Qiao. „Phylogeny and species reassessment of Hyalopterus (Aphididae, Aphidinae)“. Zoologica Scripta 49, Nr. 6 (09.09.2020): 755–67. http://dx.doi.org/10.1111/zsc.12444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ilic-Milosevic, Marijana, Olivera Petrovic-Obradovic, Sasa Stankovic, Maja Lazarevic, Aleksandra Trajkovic, Zeljko Tomanovic und Vladimir Zikic. „Estimation of the competitiveness of Ephedrus plagiator in relation to other parasitoids from the subfamily Aphidiinae“. Archives of Biological Sciences 72, Nr. 1 (2020): 53–61. http://dx.doi.org/10.2298/abs190923066i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The parasitoid species Ephedrus plagiator (Nees, 1811) (Hymenoptera: Aphidiinae) is one of the most important biological agents against pest aphids. We investigated whether this species was in competition with some other aphidiine species for the same hosts. We thus examined its potential in biological programs to control aphids. We applied an unsupervised artificial neural network, a self-organizing map (SOM), which classified the competitive parasitoids into seven groups. The SOM also visualized the distributional pattern of 31 parasitoid wasps along the neural network, revealing their competitive ability in relation to E. plagiator. Indicator value (IndVal) analysis quantified the competitive ability and showed that the most competitive species with regard to E. plagiator were Lysiphlebus testaceipes (Cresson, 1880), L. fabarum (Marshall 1896), L. cardui (Marshall 1896) and Binodoxys angelicae (Haliday, 1833). These species appeared in four different SOM groups and mostly parasitized the Aphis fabae Scopoli, 1763 (Hemiptera: Aphididae) host.
4

WEBER, G. „On the Ecological Genetics of Metopolophium dirhodum (Walker) (Hemiptera, Aphididae)“. Zeitschrift für Angewandte Entomologie 100, Nr. 1-5 (26.08.2009): 451–58. http://dx.doi.org/10.1111/j.1439-0418.1985.tb02805.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Puterka, Gary J., und Don C. Peters. „Genetics of Greenbug (Homoptera: Aphididae) Virulence to Resistance in Sorghum“. Journal of Economic Entomology 88, Nr. 2 (01.04.1995): 421–29. http://dx.doi.org/10.1093/jee/88.2.421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhou, Hong-Xu, Rui-Ming Zhang, Xiu-Mei Tan, Yun-Li Tao, Fang-Hao Wan, Qiang Wu und Dong Chu. „Invasion Genetics of Woolly Apple Aphid (Hemiptera: Aphididae) in China“. Journal of Economic Entomology 108, Nr. 3 (15.04.2015): 1040–46. http://dx.doi.org/10.1093/jee/tov074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Blackman, R. L. „Spermatogenesis in the aphid Amphorophora tuberculata (Homoptera, Aphididae)“. Chromosoma 92, Nr. 5 (September 1985): 357–62. http://dx.doi.org/10.1007/bf00327467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhang, Shuai, Junyu Luo, Chunyi Wang, Limin Lv, Chunhua Li, Weili Jiang, Jinjie Cui und Lubna Bashir Rajput. „Complete mitochondrial genome ofAphis gossypiiGlover (Hemiptera: Aphididae)“. Mitochondrial DNA 27, Nr. 2 (27.05.2014): 854–55. http://dx.doi.org/10.3109/19401736.2014.919474.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

WEBER, G. „On the ecological genetics of Sitobion a venae (F.) (Hemiptera, Aphididae)“. Zeitschrift für Angewandte Entomologie 100, Nr. 1-5 (26.08.2009): 100–110. http://dx.doi.org/10.1111/j.1439-0418.1985.tb02764.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bennewicz, Janina, Tadeusz Barczak und Maciej Korczyński. „Urban greenery aphids (Hemiptera, Aphididae)“. Archives of Biological Sciences 65, Nr. 3 (2013): 1053–61. http://dx.doi.org/10.2298/abs1303053b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tazerouni, Zahra, Asghar Talebi und Ehsan Rakhshani. „The foraging behavior of Diaeretiella rapae (Hymenoptera: Braconidae) on Diuraphis noxia (Hemiptera: Aphididae)“. Archives of Biological Sciences 63, Nr. 1 (2011): 225–34. http://dx.doi.org/10.2298/abs1101225t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Host stage preference, functional response and mutual interference of Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae: Aphidiinae) on Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae) were investigated under defined laboratory conditions (20?1?C; 60?5% relative humidity; 16 h light/8 h dark photoperiod). Nicholson?s model and linear regression were used to determine per capita search-efficiency and the interference coefficient, respectively. There was a significant difference between the rates of parasitism on different stages of D. noxia. The highest parasitism percentage was observed on the third instar nymphs of D. noxia in both choice and no-choice preference tests. Results of logistic regression revealed a type II functional response. The estimated values of search-efficiency (a) and handling time (Th) were 0.072 h-1 and 0.723 h, respectively. The maximum attack rate was calculated to be 33.22. The per capita search-efficiency decreased from 0.011 to 0.004 (h-1) as parasitoid densities increased from 1 to 8. Therefore, different host-parasitoid ratios can affect the efficacy of D. rapae.
12

Zhang, Bo, Jincheng Zheng, Lina Liang, Susan Fuller und Chun-Sen Ma. „The complete mitochondrial genome ofSitobion avenae(Hemiptera: Aphididae)“. Mitochondrial DNA 27, Nr. 2 (12.06.2014): 945–46. http://dx.doi.org/10.3109/19401736.2014.926498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bing, J. W., W. D. Guthrie und F. F. Dicke. „Genetics of Resistance in Maize to the Corn Leaf Aphid (Homoptera: Aphididae)“. Journal of Economic Entomology 85, Nr. 4 (01.08.1992): 1476–79. http://dx.doi.org/10.1093/jee/85.4.1476.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

An, Li, Zheng Fang und Qingbei Weng. „The complete mitochondrial genome of Brevicoryne brassicae (Hemiptera: Aphididae)“. Mitochondrial DNA Part B 6, Nr. 3 (04.03.2021): 974–75. http://dx.doi.org/10.1080/23802359.2021.1888334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Farooq, Muhammad, Xun Zhu, Muhammad Shakeel, Ayesha Iftikhar, Muhammad Rafiq Shahid, Nadia Saeed und Muhammad Shahid Arain. „Comparative analysis of the demographic parameters of seven spotted ladybird beetle (Coleoptera: Coccinellidae) reared on various host aphid species“. PeerJ 8 (17.01.2020): e8313. http://dx.doi.org/10.7717/peerj.8313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Background The demographic parameters of the predacious seven spotted ladybird beetle Coccinella septempunctata Linnaeus (Coleoptera: Coccinellidae) reared on the following four host aphid species were compared: Rhopalosiphum padi Linnaeus (Hemiptera: Aphididae), Rhopalosiphum maidis Fitch (Hemiptera: Aphididae), Sitobion avenae Fabricius (Hemiptera: Aphididae), and Schizaphis graminum Rondani (Hemiptera: Aphididae). Methods The developmental period, fecundity, adult preoviposition period, total preoviposition period and population parameters were evaluated based on the two-sex age-stage life table. The duration of the developmental stages and the population parameters were calculated with the TWOSEX-MSChart program, whereas population size was projected based on the two-sex age-stage life table data with the TIMING-MSChart program. Results The intrinsic rate of increase (r) was the highest in the R. padi predators (0.1946 per day), followed by the S. graminum (0.1435 per day), S. avenae (0.1400 per day), and R. maidis (0.1180 per day) predators. The differences in the net reproductive rate (R0) and the finite rate of increase (λ) when C. septempunctata was reared on the four aphid species were consistent with the r values. This trend was reversed for the mean generation time (T), which ranged from 29.02 days for the lady beetles reared on R. padi to 39.75 days for the lady beetles reared on R. maidis. Interestingly, R. padi was the most suitable host, while the congeneric R. maidis was the least suitable. The results of this study may be useful for future investigations regarding the ecological effects of predatory species and the mass-production of C. septempunctata in the laboratory for an augmentative release of an aphid predator.
16

Niu, Ruichang, Xueke Gao, Junyu Luo, Li Wang, Kaixin Zhang, Dongyang Li, Jichao Ji, Jinjie Cui, Xiangzhen Zhu und Shuai Zhang. „Mitochondrial genome of Aphis gossypii Glover cucumber biotype (Hemiptera: Aphididae)“. Mitochondrial DNA Part B 6, Nr. 3 (04.03.2021): 922–24. http://dx.doi.org/10.1080/23802359.2021.1888328.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Li, Cailing, Liyun Jiang, Gexia Qiao und Jing Chen. „Complete mitochondrial genome of Mollitrichosiphum tenuicorpus (Okajima, 1908) (Hemiptera: Aphididae: Greenideinae)“. Mitochondrial DNA Part B 6, Nr. 2 (01.02.2021): 361–62. http://dx.doi.org/10.1080/23802359.2020.1866462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Aikhionbare, Felix O., Kenneth P. Pruess und Z. B. Mayo. „Greenbug (Homoptera: Aphididae) biotypes characterized using random amplified polymorphic DNA“. Genetic Analysis: Biomolecular Engineering 14, Nr. 4 (Oktober 1998): 105–8. http://dx.doi.org/10.1016/s1050-3862(98)00002-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Massonnet, Blandine, Jean-Christophe Simon und Wolfgang W. Weisser. „Metapopulation structure of the specialized herbivore Macrosiphoniella tanacetaria (Homoptera, Aphididae)“. Molecular Ecology 11, Nr. 12 (Dezember 2002): 2511–21. http://dx.doi.org/10.1046/j.1365-294x.2002.01633.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Weber, G. „Population genetics of insecticide resistance in the green peach aphid, Myzus persicae (Sulz.) (Homoptera, Aphididae)“. Zeitschrift für Angewandte Entomologie 99, Nr. 1-5 (26.08.2009): 408–21. http://dx.doi.org/10.1111/j.1439-0418.1985.tb02004.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Shuanqin Yue, Jun Wen und Zhumei Ren. „The Complete Mitochondrial Genome of the Rhus Gall Aphid Nurudea shiraii (Hemiptera: Aphididae: Eriosomatinae)“. Cytology and Genetics 53, Nr. 4 (Juli 2019): 321–24. http://dx.doi.org/10.3103/s009545271904011x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Li, Ya-Qiong, Jing Chen und Ge-Xia Qiao. „Complete mitochondrial genome of the aphid Hormaphis betulae (Mordvilko) (Hemiptera: Aphididae: Hormaphidinae)“. Mitochondrial DNA Part A 28, Nr. 2 (29.12.2015): 265–66. http://dx.doi.org/10.3109/19401736.2015.1118071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

BLACKMAN, ROGER L., PAUL A. BROWN, CLAUDIO C. RAMIREZ und HERMANN M. NIEMEYER. „Karyotype variation in the South American aphid genus Neuquenaphis (Hemiptera, Aphididae, Neuquenaphidinae)“. Hereditas 138, Nr. 1 (März 2003): 6–10. http://dx.doi.org/10.1034/j.1601-5223.2003.01692.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Blackman, R. L., J. M. Spence, L. M. Field, N. Javed, G. J. Devine und A. L. Devonshire. „Inheritance of the amplified esterase genes responsible for insecticide resistance in Myzus persicae (Homoptera: Aphididae)“. Heredity 77, Nr. 2 (August 1996): 154–67. http://dx.doi.org/10.1038/hdy.1996.120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

FOOTTIT, R. G., H. E. L. MAW, C. D. VON DOHLEN und P. D. N. HEBERT. „Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes“. Molecular Ecology Resources 8, Nr. 6 (November 2008): 1189–201. http://dx.doi.org/10.1111/j.1755-0998.2008.02297.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Jacobs, S. P., A. P. Liggins, J. J. Zhou, J. A. Pickett, X. Jin und L. M. Field. „OS-D-like genes and their expression in aphids (Hemiptera: Aphididae)“. Insect Molecular Biology 14, Nr. 4 (August 2005): 423–32. http://dx.doi.org/10.1111/j.1365-2583.2005.00573.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Mathers, Thomas C., Sam T. Mugford, Saskia A. Hogenhout und Leena Tripathi. „Genome Sequence of the Banana Aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) and Its Symbionts“. G3: Genes|Genomes|Genetics 10, Nr. 12 (01.10.2020): 4315–21. http://dx.doi.org/10.1534/g3.120.401358.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae), is a major pest of cultivated bananas (Musa spp., order Zingiberales), primarily due to its role as a vector of Banana bunchy top virus (BBTV), the most severe viral disease of banana worldwide. Here, we generated a highly complete genome assembly of P. nigronervosa using a single PCR-free Illumina sequencing library. Using the same sequence data, we also generated complete genome assemblies of the P. nigronervosa symbiotic bacteria Buchnera aphidicola and Wolbachia. To improve our initial assembly of P. nigronervosa we developed a k-mer based deduplication pipeline to remove genomic scaffolds derived from the assembly of haplotigs (allelic variants assembled as separate scaffolds). To demonstrate the usefulness of this pipeline, we applied it to the recently generated assembly of the aphid Myzus cerasi, reducing the duplication of conserved BUSCO genes by 25%. Phylogenomic analysis of P. nigronervosa, our improved M. cerasi assembly, and seven previously published aphid genomes, spanning three aphid tribes and two subfamilies, reveals that P. nigronervosa falls within the tribe Macrosiphini, but is an outgroup to other Macrosiphini sequenced so far. As such, the genomic resources reported here will be useful for understanding both the evolution of Macrosphini and for the study of P. nigronervosa. Furthermore, our approach using low cost, high-quality, Illumina short-reads to generate complete genome assemblies of understudied aphid species will help to fill in genomic black spots in the diverse aphid tree of life.
28

Moran, Nancy A. „Morphological Adaptation to Host Plants in Uroleucon (Homoptera: Aphididae)“. Evolution 40, Nr. 5 (September 1986): 1044. http://dx.doi.org/10.2307/2408762.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Havelka, J., A. H. Shukshuk, M. E. Ghaliow, Amari La, N. G. Kavallieratos, Z. Tomanovic, E. Rakhshani, X. Pons und P. Starý. „Review of invasive grapevine aphid, Aphis illinoisensis Shimer, and native parasitoids in the Mediterranean (Hemiptera, Aphididae; Hymenoptera, Braconidae, Aphidiinae)“. Archives of Biological Sciences 63, Nr. 1 (2011): 269–74. http://dx.doi.org/10.2298/abs1101269h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A summary of the study of Aphis illinoisensis Shimer on grapes, Vitis vinifera in the Mediterranean area brings references and new findings on its distribution in Crete/Greece, Turkey, Northern Cyprus, Malta, Israel, Montenegro, Tunisia, Algeria and Libya. Parasitoids of A. illinoisensis were only occasionally found (Aphidius matricariae Hal. - Cyprus, Turkey, Greece; Aphidius colemani Viereck - Libya; Lysiphlebus testaceipes Cress. - Algeria). Of the native species, i.e. A. colemani, and others similar to the native species, L. testaceipes seem to be a promising biocontrol agent within the framework of an ecologically friendly management in the area. Given the evidence of its expansion, A. illinoisensis is expected to expand further in several directions from the recently documented invaded area to all the grape-growing areas of the Mediterranean and even those of South-Eastern and Central Europe.
30

Favret, Colin, und David J. Voegtlin. „Speciation by host-switching in pinyon Cinara (Insecta: Hemiptera: Aphididae)“. Molecular Phylogenetics and Evolution 32, Nr. 1 (Juli 2004): 139–51. http://dx.doi.org/10.1016/j.ympev.2003.12.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Zhao, C., X. M. Yang, S. H. Tang, P. J. Xu, W. J. Bian, X. F. Wang, X. W. Wang und G. W. Ren. „Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis“. Genetics and Molecular Research 14, Nr. 4 (2015): 17159–69. http://dx.doi.org/10.4238/2015.december.16.16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Ruiz-Montoya, L., J. Núñez-Farfán und J. Vargas. „Host-associated genetic structure of Mexican populations of the cabbage aphid Brevicoryne brassicae L. (Homoptera: Aphididae)“. Heredity 91, Nr. 4 (26.09.2003): 415–21. http://dx.doi.org/10.1038/sj.hdy.6800338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Blackman, R. L., J. M. Spence, L. M. Field und A. L. Devonshire. „Chromosomal location of the amplified esterase genes conferring resistance to insecticides in Myzus persicae (Homoptera: Aphididae)“. Heredity 75, Nr. 3 (September 1995): 297–302. http://dx.doi.org/10.1038/hdy.1995.138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

HALES, DINAH F., MATHEW A. SLOANE, ALEX C. C. WILSON und PAUL SUNNUCKS. „Segregation of autosomes during spermatogenesis in the peach-potato aphid (Myzus persicae) (Sulzer) (Hemiptera: Aphididae)“. Genetical Research 79, Nr. 2 (April 2002): 119–27. http://dx.doi.org/10.1017/s001667230100550x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Most aphids are cyclic parthenogens, so are ideal models in studies of the mechanisms and consequences of sex and recombination. However, owing to a shortage of physical and genetic markers, there have been few studies of the most fundamental genetic processes in these organisms. For example, it is not known whether autosomal segregation during male spermatogenesis is in Mendelian proportions: we address that question here. The aphid Myzus persicae has a typical karyotype of 2n = 12 in females (XX), while males are XO (2n = 11). During male meiosis, only the spermatocytes with an X chromosome are viable. We hypothesized that assortment of autosomes might be non-random because chromosomal imprinting leading to elimination of the paternal autosomes is seen in the closely related coccoids. In other aphid models, we have observed segregation distortions at single microsatellite loci (Wilson, 2000). Such distortions may have nothing to do with ‘selfish’ behaviour, but may be caused by mutation accumulation causing fitness differentials. Thus single-locus distortions might be predicted to be more likely to be detected via the male lines of clones that have lost the ability to reproduce sexually (male-producing obligate parthenogenesis (androcyclic)). Using microsatellites we show that genetic imprinting or selfish autosome behaviour does not occur in male M. persicae. Generally, loci segregated in Mendelian proportions in both sexes of cyclically parthenogenetic (holocyclic) clones. However, in androcyclic clones, segregation distortions consistently involved the same two autosomes. This is consistent with linkage of markers to deleterious mutations associated with a loss of sexual reproduction.
35

Kubo, Isao, Ikuyo Kinst-Hori, Ken-Ichi Nihei, Frida Soria, Midori Takasaki, José S. Calderón und Carlos L. Céspedes. „Tyrosinase Inhibitors from Galls of Rhus javanica Leaves and Their Effects on Insects“. Zeitschrift für Naturforschung C 58, Nr. 9-10 (01.10.2003): 719–25. http://dx.doi.org/10.1515/znc-2003-9-1022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractAs a defense mechanism of the leaves of Rhus javanica (Anacardiaceae) against the aphid Melaphis chinensis (Aphididae) attack, tannic acid is rapidly accumulated and forms galls along the midrib of the leaves resulting in a unique natural medicine Gallae Rhois. Tannic acid was found to inhibit the oxidation of ʟ-3,4-dihydroxyphenylalanine (ʟ-DOPA) catalyzed by tyrosinase (EC 1.14.18.1) with an IC50 of 22 μᴍ. The aphid would detoxify the ingested toxic tannic acid to relatively nontoxic gallic acid, whereas the non-adapted pink bollworm Pectinophora gossypiella larvae are sensitive to the ingested tannic acid.
36

Mandrioli, M., P. Azzoni, G. Lombardo und G. C. Manicardi. „Composition and Epigenetic Markers of Heterochromatin in the Aphid Aphis nerii (Hemiptera: Aphididae)“. Cytogenetic and Genome Research 133, Nr. 1 (2011): 67–77. http://dx.doi.org/10.1159/000323510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Vucetic, Andja, Ivana Jovicic und Olivera Petrovic-Obradovic. „The pressure of Aphids (Aphididae, Hemiptera), vectors of potato viruses“. Archives of Biological Sciences 65, Nr. 2 (2013): 659–66. http://dx.doi.org/10.2298/abs1302659v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Plant viruses and aphids as their vectors, are limiting factors in the production of healthy seed potato. Potato Virus Y (PVY) and Potato Leafroll Virus (PLRV) are the two most significant potato viruses in Europe, and seed quality depends directly on the infection level. In order to determine the possibilities for healthy seed potato production in Serbia, aphid flight activities have been monitored for four years in four localities. Over 6400 specimens of aphids have been collected. The number of aphids and vector pressure index varies depending on the localities? altitude. In localities at altitudes under 1000 m, they were high. The highest index was in locality Kotraza in 2007, when the PVY index exceeded the value of 180, while for PLRV it was 60. At high altitudes, above 1100 m, the number of aphids was low, as was the vector pressure index. The lowest index values were recorded in localities on Mt. Golija at 1300 m a.s.l. where the indexes for both viruses never exceeded value 6.
38

Song, Yan-Fei, Hui Zhang, Chen Zeng, Shuai Ye, Mao-Fa Yang und Jian-Feng Liu. „Complete mitochondrial genome of Neotoxoptera formosana (Takahashi, 1921) (Hemiptera: Aphididae), with the phylogenetic analysis“. Mitochondrial DNA Part B 6, Nr. 6 (21.05.2021): 1706–7. http://dx.doi.org/10.1080/23802359.2021.1929532.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zhang, Xiaolu, Yaqiong Li, Cailing Li, Gexia Qiao und Jing Chen. „The complete mitochondrial genome of Schizoneuraphis gallarum van der Goot, 1917 (Hemiptera: Aphididae: Hormaphidinae)“. Mitochondrial DNA Part B 6, Nr. 10 (20.09.2021): 2982–83. http://dx.doi.org/10.1080/23802359.2021.1914209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Xu, Ting‐Ting, Jing Chen, Li‐Yun Jiang und Ge‐Xia Qiao. „Diversity of bacteria associated with Hormaphidinae aphids (Hemiptera: Aphididae)“. Insect Science 28, Nr. 1 (13.04.2020): 165–79. http://dx.doi.org/10.1111/1744-7917.12746.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Manicardi, G. C., D. Bizzaro, E. Galli und U. Bianchi. „Heterochromatin heterogeneity in the holocentric X chromatin of Megoura viciae (Homoptera, Aphididae)“. Genome 39, Nr. 2 (01.04.1996): 465–70. http://dx.doi.org/10.1139/g96-059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Holocentric chromosomes, prepared by spreading embryo cells obtained from Megoura viciae parthenogenetic females, have been C-banded, enzymatically digested in situ using the specific endonucleases DdeI (C↓TNAG), DraI (TTT↓AAA), Tru9I (TT↓AA), and CfoI (GCG↓C), and subsequently stained with Giemsa, DAPI, CMA3, and AgNO3. We observed that the X chromosome had the best defined banding patterns. In the M. viciae X chromosome there is a certain amount of heterogeneity in heterochromatic DNA composition. In fact, the GC-rich NOR-associated heterochromatin differs from other heterochromatic bands that are characterized by AT-rich DNAs. Our data also indicate that, in M. viciae holocentric chromosomes, all heterochromatic blocks are accessible to in situ enzyme attack, the only limit to the digestion being the presence or absence of recognition targets. This is an interesting point, since, in monocentric chromosomes, it is well known that in situ endonuclease digestion is heavily affected not only by DNA base composition but also by chromatin compactness that may limit enzyme accessibility to their specific targets. Key words : heterochromatin, holocentric chromosomes, aphids.
42

Celis, Verónica E. Rubín de, Dirceu N. Gassen, Marisa C. Santos-Colares, Alice K. Oliveira und Vera L. S. Valente. „Chromosome studies in southern Brazilian wheat pest aphids Sitobion avenae, Schizaphis graminum, and Methopolophium dirhodum (Homoptera: Aphididae)“. Brazilian Journal of Genetics 20, Nr. 3 (September 1997): 415–19. http://dx.doi.org/10.1590/s0100-84551997000300010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We examined the chromosome set of the aphid species Sitobion avenae, Schizaphis graminum and Methopolophium dirhodum by means of conventional staining and C, NOR, AluI and HaeIII banding methods. These species are considered important pests to several plants of economic interest in Brazil. No variation was observed in the number of chromosomes of S. avenae, whereas there was intraspecific variation in the other two species. Interspecific differences in the response to the banding treatments were observed. Whereas these techniques allowed the identification of several S. graminum chromosome pairs, only the AluI treatment was capable of inducing differential staining in the M. dirhodum chromosomes and no clear patterns emerged when the S. avenae preparations were treated
43

Naseem, Muhammad Tayyib, Muhammad Ashfaq, Arif Muhammad Khan, Akhtar Rasool, Muhammad Asif und Paul D. N. Hebert. „BIN overlap confirms transcontinental distribution of pest aphids (Hemiptera: Aphididae)“. PLOS ONE 14, Nr. 12 (10.12.2019): e0220426. http://dx.doi.org/10.1371/journal.pone.0220426.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Xin, Juan-Juan, Qing-Li Shang, Nicolas Desneux und Xi-Wu Gao. „Genetic Diversity of Sitobion avenae (Homoptera: Aphididae) Populations from Different Geographic Regions in China“. PLoS ONE 9, Nr. 10 (30.10.2014): e109349. http://dx.doi.org/10.1371/journal.pone.0109349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Simon, Jean-Christophe, und Paul D. N. Hebert. „Patterns of genetic variation among Canadian populations of the bird cherry-oat aphid, Rhopalosiphum padi L. (Homoptera: Aphididae)“. Heredity 74, Nr. 4 (April 1995): 346–53. http://dx.doi.org/10.1038/hdy.1995.52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Blackmail, R. L. „Stability of a multiple X chromosome system and associated B chromosomes in birch aphids (Euceraphis spp.; Homoptera: Aphididae)“. Chromosoma 96, Nr. 4 (April 1988): 318–24. http://dx.doi.org/10.1007/bf00286920.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Blackman, Roger L., Jennifer M. Spence und Benjamin B. Normark. „High diversity of structurally heterozygous karyotypes and rDNA arrays in parthenogenetic aphids of the genus Trama (Aphididae: Lachninae)“. Heredity 84, Nr. 2 (Februar 2000): 254–60. http://dx.doi.org/10.1046/j.1365-2540.2000.00667.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

M.A., ABDEL-RAHEEM, ABLA F. A. SAAD und ABDEL-RAHMAN I.E. „Entomopathogenic Fungi on Fabae bean Aphid, Aphis craccivora (Koch) (Hemiptera: Aphididae)“. Romanian Biotechnological Letters 26, Nr. 4 (29.06.2021): 2862–68. http://dx.doi.org/10.25083/rbl/26.4/2862-2868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The Aphids, Aphis craccivora (Koch) is a serious pest in agricultural fields in Egypt. Entomopathogenic fungi are biological control agents of insects. The study was carried out on the aphid by using of Bio Catch, Verticillium lecanii, Bio Power, Beauveria bassiana and Bio Magic, Metarhizium anisopliae on A. craccivora. Laboratory experiments were done to measure the pathogenicity of three commercial compounds from entomopathogenic fungi, Bio Catch, V. lecanii, Bio Power, B. bassiana, and Bio Magic, M. anisopliae against adults and nymphs of A. craccivora. Three concentrations were used from all compounds, 107 , 108 and 109 spores/ml. at 22 ± 2°C and 75 ± 5 R.H. The concentration (109 spores/ml.) gave 100% mortality with V. lecanii and B. bassiana then M. anisopliae. The Lowest LC50 value of 2.1 x 106 spores/ml. was recorded by V. lecanii, which showed higher virulence compared to other entomopathogenic fungi. The LC50 values of V. lecanii, B. bassiana and M. anisopliae were 2.1 x 106 , 4.3 x 106 and 6.4 x 107 spores ml., respectively. At the highest concentration of 109 spores/ml., the Median LT50 values for V. lecanii, B. bassiana and M. anisopliae were 4.2, 5.2 and 7.0 days, respectively.
49

Petrovic-Obradovic, Olivera, Z. Tomanovic, L. Poljakovic-Pajnik, Snjezana Hrncic, Andja Vucetic und Sanja Radonjic. „New invasive species of aphids (Hemiptera, Aphididae) in Serbia and Montenegro“. Archives of Biological Sciences 62, Nr. 3 (2010): 775–80. http://dx.doi.org/10.2298/abs1003775p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Three new invasive species of aphids have been found in Serbia: Chaitophorus populifolli Essig, Myzocallis walshii (Monell) and Trichosiphonaphis polygonifoliae (Shinji) and two have been found in Montenegro: Aphis illinoisensis Shimer and Tinocallis kahawaluokalani (Kirkaldy). A. illinoisensis is a pest of the grapevine, T. polygonifoliae, feeds on a decorative shrub (Lonicera) and the other three feed on trees (Populus, Quercus and Lagerostroemia). Three of the species are American aphids and two are of Asian origin. Their morphology, illustrated by original drawings and data on the biology and distribution are given. .
50

Yao, Izumi, Shin-ICHI Akimoto und Eisuke Hasegawa. „Isolation of microsatellite markers from the drepanosiphid aphid Tuberculatus quercicola (Homoptera, Aphididae)“. Molecular Ecology Notes 3, Nr. 4 (Oktober 2003): 542–43. http://dx.doi.org/10.1046/j.1471-8286.2003.00504.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie