Auswahl der wissenschaftlichen Literatur zum Thema „Aphididae Genetics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Aphididae Genetics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Aphididae Genetics":

1

Görür, G., H. Akyildirim, G. Olcabey und B. Akyurek. „The aphid fauna of Turkey: An updated checklist“. Archives of Biological Sciences 64, Nr. 2 (2012): 675–92. http://dx.doi.org/10.2298/abs1202675g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This study provides a comprehensive list of Turkey aphid fauna (Hemiptera: Aphididea). A total of 466 species and 12 subspecies belonging to 141 genera and 13 tribes, are listed. The list includes all records from 1903 to 2011. The family of Aphididae comprise the highest number of species (457), followed by Adelgidae (6) and Phylloxeridae (3), respectively. Inside Aphididae, the tribe of Macrosiphini is the richest group with 197 species, whereas the tribe of Cinarini has only one species. The number of aphid species actually reported for Turkey is lower than recorded for neighboring countries, suggesting that further faunistic studies needs to improve informations on this topic.
2

Liu, Tongyi, Jing Chen, Liyun Jiang und Gexia Qiao. „Phylogeny and species reassessment of Hyalopterus (Aphididae, Aphidinae)“. Zoologica Scripta 49, Nr. 6 (09.09.2020): 755–67. http://dx.doi.org/10.1111/zsc.12444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ilic-Milosevic, Marijana, Olivera Petrovic-Obradovic, Sasa Stankovic, Maja Lazarevic, Aleksandra Trajkovic, Zeljko Tomanovic und Vladimir Zikic. „Estimation of the competitiveness of Ephedrus plagiator in relation to other parasitoids from the subfamily Aphidiinae“. Archives of Biological Sciences 72, Nr. 1 (2020): 53–61. http://dx.doi.org/10.2298/abs190923066i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The parasitoid species Ephedrus plagiator (Nees, 1811) (Hymenoptera: Aphidiinae) is one of the most important biological agents against pest aphids. We investigated whether this species was in competition with some other aphidiine species for the same hosts. We thus examined its potential in biological programs to control aphids. We applied an unsupervised artificial neural network, a self-organizing map (SOM), which classified the competitive parasitoids into seven groups. The SOM also visualized the distributional pattern of 31 parasitoid wasps along the neural network, revealing their competitive ability in relation to E. plagiator. Indicator value (IndVal) analysis quantified the competitive ability and showed that the most competitive species with regard to E. plagiator were Lysiphlebus testaceipes (Cresson, 1880), L. fabarum (Marshall 1896), L. cardui (Marshall 1896) and Binodoxys angelicae (Haliday, 1833). These species appeared in four different SOM groups and mostly parasitized the Aphis fabae Scopoli, 1763 (Hemiptera: Aphididae) host.
4

WEBER, G. „On the Ecological Genetics of Metopolophium dirhodum (Walker) (Hemiptera, Aphididae)“. Zeitschrift für Angewandte Entomologie 100, Nr. 1-5 (26.08.2009): 451–58. http://dx.doi.org/10.1111/j.1439-0418.1985.tb02805.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Puterka, Gary J., und Don C. Peters. „Genetics of Greenbug (Homoptera: Aphididae) Virulence to Resistance in Sorghum“. Journal of Economic Entomology 88, Nr. 2 (01.04.1995): 421–29. http://dx.doi.org/10.1093/jee/88.2.421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhou, Hong-Xu, Rui-Ming Zhang, Xiu-Mei Tan, Yun-Li Tao, Fang-Hao Wan, Qiang Wu und Dong Chu. „Invasion Genetics of Woolly Apple Aphid (Hemiptera: Aphididae) in China“. Journal of Economic Entomology 108, Nr. 3 (15.04.2015): 1040–46. http://dx.doi.org/10.1093/jee/tov074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Blackman, R. L. „Spermatogenesis in the aphid Amphorophora tuberculata (Homoptera, Aphididae)“. Chromosoma 92, Nr. 5 (September 1985): 357–62. http://dx.doi.org/10.1007/bf00327467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhang, Shuai, Junyu Luo, Chunyi Wang, Limin Lv, Chunhua Li, Weili Jiang, Jinjie Cui und Lubna Bashir Rajput. „Complete mitochondrial genome ofAphis gossypiiGlover (Hemiptera: Aphididae)“. Mitochondrial DNA 27, Nr. 2 (27.05.2014): 854–55. http://dx.doi.org/10.3109/19401736.2014.919474.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

WEBER, G. „On the ecological genetics of Sitobion a venae (F.) (Hemiptera, Aphididae)“. Zeitschrift für Angewandte Entomologie 100, Nr. 1-5 (26.08.2009): 100–110. http://dx.doi.org/10.1111/j.1439-0418.1985.tb02764.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bennewicz, Janina, Tadeusz Barczak und Maciej Korczyński. „Urban greenery aphids (Hemiptera, Aphididae)“. Archives of Biological Sciences 65, Nr. 3 (2013): 1053–61. http://dx.doi.org/10.2298/abs1303053b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Aphididae Genetics":

1

Anstead, James Andrew. „Population genetics of knockdown resistance (kdr) to pyrethroid insecticides in the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae)“. Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1444497/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The peach-potato aphid Myzus persicae (Sulzer) has developed resistance to pyrethroid insecticides as a result of two mutations in the para-type sodium channel protein: L1014F (kdr) and M918T (super-kdr). Two allelic discriminating PCR assays were developed that used fluorescent probes to determine precisely the genotype of these mutations in individuals of M. persicae. These assays were used alongside existing assays for other resistance mechanisms (MACE and elevated carboxylesterase) to investigate the temporal and spatial incidence of insecticide resistance in M. persicae. The kdr mutation and elevated carboxylesterase were found to be widely distributed, being present throughout Europe and in Australia. MACE and super-kdr were widespread in Europe, but were not detected in insects from Australia. A significant deviation from Hardy-Weinberg equilibrium in the populations sampled implied selection against individuals that are homozygous for these resistance mutations. Patterns of distribution in the UK also indicated strong selection against the super-kdr mutation in the absence of insecticide pressure. Significant associations were found between all the different resistance mechanisms, probably promoted by asexual reproduction. The current distribution of the kdr and super-kdr mutations could have arisen by migration from a single source or by independent mutations arising in separate populations. Sequences of intron DNA flanking the mutations showed multiple independent origins of kdr and super-kdr to be the most plausible explanation of these data.
2

Timm, Alicia (Alicia Eva). „Genetic diversity of root-infesting woolly apple aphid Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae) populations in the Western Cape“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53436.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (MScAgric)--University of Stellenbosch, 2003.
ENGLISH ABSTRACT: Characterizing the genetic structure of a pest population can provide an understanding of the factors influencing its evolution and assist in its ultimate control. The aim of the present study was to characterize the genetic structure of woolly apple aphid Eriosoma lanigerum (Hausmann) populations in the Western Cape Province in South Africa. Since this economically important apple pest has not previously been characterized at molecular level, it was necessary to evaluate methods for determining the genetic structure of E. lanigerum populations. Two different molecular techniques were evaluated viz. random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). This study represents the first application of the latter technique to members of the Aphididae. Aphids were sampled from four regions in the Western Cape in South Africa viz. Elgin, Ceres, Vyeboom and Villiersdorp. A spatially nested sampling design was used to establish the distribution of the genetic variance of aphids. A total of 192 individuals from 13 farms were analysed. Ten RAPD primers were chosen for analysis from an initial assay of 25 after fragment reproducibility had been confirmed. For AFLP analysis three different rare-cutting restriction enzymes were evaluated for AFLP analysis, viz. EcoRI, SseI and MluI. The latter yielded the best results in combination with the frequent-cutting enzyme MseI. Twenty-five AFLP selective primer pairs were evaluated, out of which five were chosen for analysis of the total population. Two hundred and fifty AFLP fragments and 47 RAPD fragments were scored for analysis. Both analyses indicated that a low level of genetic variation was apparent in E. lanigerum populations and that no differentiation resulted from geographic isolation. From RAPD analyses it was deduced that all variation could be attributed to differences between individuals. AFLP analysis indicated that, whereas genetic differences in E. lanigerum populations between orchards were negligible, a significant portion of genetic variation could be attributed to differences between farms and individuals within farms. Therefore, AFLP analysis allowed for finer discrimination of the genetic structure of E. lanigerum populations than RAPD analysis and is recommended for studies of other aphid species. The fact that most of the genetic variation present in E. lanigerum populations could be found on small spatial scales indicated that sampling individuals over a wide geographic area was an ineffective way of detecting the genetic diversity present in E. lanigerum populations. The low level of variation in populations is most likely due to the exclusive occurrence of parthenogenetic reproduction, founder effects (including distribution of infested plant material from a limited source) and selective factors such as the use of resistant rootstocks or pesticides. Furthermore, the low level of variation found indicated that the possibility of controlling E. lanigerum in the Western Cape using host plant resistance is favourable. Thus, plant breeders developing resistance to E. lanigerum can expect plant entries to be exposed to most of the genetic diversity present in Western Cape populations, regardless of location.
AFRIKAANSE OPSOMMING: Die bepaling van die genetiese struktuur van 'n landboukundige plaagpopulasie kan lei tot begrip van die faktore wat die populasie beïnvloed en kan uiteindelike beheer vergemaklik. Die doel van die huidige studie was om die genetiese struktuur van die appelbloedluis Eriosoma lanigerum (Hausmann) in die Wes-Kaap Provinsie van Suid-Afrika te bepaal. Aangesien hierdie belangrike appelplaag nie van tevore op molekulêre vlak bestudeer is nie, was dit nodig om metodes vir die bepaling van die genetiese struktuur van E. lanigerum populasies te evalueer. Twee molekulêre tegnieke is geëvalueer, nl. lukraak geamplifiseerde polimorfiese ONS (RAPD) en geamplifiseerde fragment-lengte polimorfismes (AFLP). Hierdie studie is die eerste om laasgenoemde tegniek te gebruik om lede van die Aphididae te bestudeer. Plantluise is verkry van vier verskillende gebiede in die Wes-Kaap Provinsie van Suid-Afrika nl. Elgin, Ceres, Vyeboom en Villiersdorp. 'n Hierargiese sisteem is gebruik om die verspreiding van die genetiese variasie van plantluise te bepaal. In totaal is 192 individue van 13 plase geanaliseer. Tien RAPD inleiers is gekies uit 'n analise van 25 verskillende inleiers nadat fragment reproduseerbaarheid bevestig is. Drie verskillende restriksie ensieme is geëvalueer vir AFLP analise nl. EcoRI, SseI en Mlul. Die beste resultate is verkry toe MluI saam met MseI gebruik is. Vyf-en-twintig AFLP selektiewe inleier pare is geëvalueer waarvan vyf gekies is vir analise van die totale populasie. Twee-honderd-en-vyftig AFLP fragmente en 47 RAPD fragmente is gedokumenteer vir analise. Beide RAPD en AFLP analises het getoon dat daar 'n lae vlak van genetiese variasie in E. lanigerum populasies is en dat geen differensiasie as gevolg van geografiese isolasie ontstaan het nie. Uit RAPD analise is daar afgelei dat al die variasie toegeskryf kon word aan verskille tussen individue. AFLP het aangetoon dat alhoewel verskille in E. lanigerum populasies tussen boorde laag was, kon 'n hoë persentasie van die variasie toegeskryf word aan verskille tussen plase en individue binne plase. AFLP analise het meer insig in die genetiese struktuur van E. lanigerum populasies verskaf, en word dus aanbeveel vir studies van ander plantluise. Omdat meeste van die genetiese variasie oor klein geografiese afstande verkry word, is steekproefueming oor groot gebiede 'n ondoeltreffende manier om die genetiese variasie binne 'n monster te meet. Die lae vlak van genetiese variasie is waarskynlik te wyte aan partenogenetiese vermeerdering, stigter gevolge (insluitend verspreiding van geïnfesteerde plantmateriaal vanaf 'n beperkte bron), sowel as selektiewe faktore soos die gebruik van bestande onderstokke en insekdoders. Verder dui die lae vlak van variasie aan dat die moontlikheid vir beheer deur gasheerplantbestandheid goed is in die Wes-Kaap. Planttelers kan verseker wees dat hulle plante blootgestel sal wees aan meeste van die genetiese variasie in die Wes-Kaap appelbloedluis populasies ongeag hulle ligging.
3

Gilkeson, Linda A. „Genetic selection, evaluation and management of nondiapause Aphidoletes aphidimyza (Rondani) (Diptera : Cecidomyiidae) for control of greenhouse aphids in winter“. Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73981.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

SATTRANOVÁ, Anna. „Genetická variabilita a fylogeografie mšice zhoubné \kur{Diuraphis noxia} (Aphididae)“. Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-166266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Genetic analysis of 433 samples of serious crop pest aphid Diuraphis noxia was conducted with the use of 8 microsatellites loci. Statistical analysis revealed sexual reproduction of D. noxia in temperate regions. The linkage disequilibrium was detected because of the excess of heterozygotes. These results support the theory of RNDr. Starý about the invasion of D. noxia to American continent via states of North Africa, Spain and France.
5

PAŠÍKOVSKÝ, Jiří. „Fylogeografie a genetická variabilita \kur{Diuraphis noxia} (\kur{Aphididae})“. Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-51983.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The aim of this work was a research of the genetic variability of natural populations of Russian wheat aphid Diuraphis noxia (Aphididae) by means of microsatellite markers and markers for EPIC-PCR. First goal was to introduce the methods and optimise them for Diuraphis noxia. In the follow-up pilot study, specimens from 47 lines representing 12 populations from all over the world were analysed. Having used microsatellite markers, I proved expected variability among individual populations and within them. The highest genetic variability was detected between Chile and Algeria using markers for cytochrome C in EPIC-PCR. These findings can be used for further studies of the genetic variability of the aphid Diuraphis noxia.

Bücher zum Thema "Aphididae Genetics":

1

Population structure, genetics, and taxonomy of aphids and thysanoptera: Proceedings of international symposia, held at Smolenice, Czechoslovakia, September 9-14, 1985. The Hague, Netherlands: SPB Academic Pub., 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Aphididae Genetics":

1

„Aphids (Aphididae, homoptera)“. In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 128. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_1019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie