Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Antigen specificity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Antigen specificity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Antigen specificity"
Rhodes, S. G., D. Gavier-Widen, B. M. Buddle, A. O. Whelan, M. Singh, R. G. Hewinson und H. M. Vordermeier. „Antigen Specificity in Experimental Bovine Tuberculosis“. Infection and Immunity 68, Nr. 5 (01.05.2000): 2573–78. http://dx.doi.org/10.1128/iai.68.5.2573-2578.2000.
Der volle Inhalt der QuelleJain, Deepti, und Dinakar M. Salunke. „Antibody specificity and promiscuity“. Biochemical Journal 476, Nr. 3 (05.02.2019): 433–47. http://dx.doi.org/10.1042/bcj20180670.
Der volle Inhalt der QuelleKendall-Taylor, P., D. Jones und S. Atkinson. „The specificity of autoantibodies in Graves' ophthalmopathy“. Acta Endocrinologica 116, Nr. 1_Suppl (August 1987): S330—S333. http://dx.doi.org/10.1530/acta.0.114s330.
Der volle Inhalt der QuelleJiang, Ning, Ke-yue Ma, Alexandra A. Schonnesen, Chenfeng He, Amanda Xia, Eric Sun, Eunise Chen, Katherine Sebastian, Robert Balderas und Mrinalini Kulkarni-Date. „High-Throughput and High-Dimensional Single Cell Analysis of Antigen-Specific CD8+ T cells“. Journal of Immunology 206, Nr. 1_Supplement (01.05.2021): 27.22. http://dx.doi.org/10.4049/jimmunol.206.supp.27.22.
Der volle Inhalt der QuelleLesavre, Philippe. „Antineutrophil Cytoplasmic Autoantibodies Antigen Specificity“. American Journal of Kidney Diseases 18, Nr. 2 (August 1991): 159–63. http://dx.doi.org/10.1016/s0272-6386(12)80873-0.
Der volle Inhalt der QuelleBolhuis, Reinder L. H., Els Sturm, Jan Willem Gratama und Eric Braakman. „Engineering T lymphocyte antigen specificity“. Journal of Cellular Biochemistry 47, Nr. 4 (Dezember 1991): 306–10. http://dx.doi.org/10.1002/jcb.240470404.
Der volle Inhalt der QuelleKlinger, Mark, Ruth Taniguchi, Joyce Hu, Tim Hayes, Tobias Wittkop, Thomas Asbury, Martin Moorhead et al. „A scalable multiplex assay enabling assessment of T cell receptor specificity to hundreds of self- and pathogen-derived antigens“. Journal of Immunology 196, Nr. 1_Supplement (01.05.2016): 209.4. http://dx.doi.org/10.4049/jimmunol.196.supp.209.4.
Der volle Inhalt der QuelleShahi, Payam, Bruce Adams, Daniel Reyes, Shamoni Maheshwari, Nima Mousavi, Sreenath Krishnan, Nandhini Ramen et al. „High-Throughput Antibody Discovery Using Barcode Enabled Antigen Mapping (BEAM“. Journal of Immunology 210, Nr. 1_Supplement (01.05.2023): 249.28. http://dx.doi.org/10.4049/jimmunol.210.supp.249.28.
Der volle Inhalt der QuelleTseng, Diane, Shin-Heng Chiou, Xinbo Yang, Alexandre Reuben, Julie Wilhelmy, Alana McSween, Stephanie Conley et al. „Discovery of a novel shared tumor antigen in human lung cancer.“ Journal of Clinical Oncology 38, Nr. 15_suppl (20.05.2020): 3087. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.3087.
Der volle Inhalt der QuelleZollinger, Wendell D., Elizabeth E. Moran und Deborah H. Schmiel. „Characterization of an Antibody Depletion Assay for Analysis of Bactericidal Antibody Specificity“. Clinical and Vaccine Immunology 16, Nr. 12 (14.10.2009): 1789–95. http://dx.doi.org/10.1128/cvi.00255-09.
Der volle Inhalt der QuelleDissertationen zum Thema "Antigen specificity"
Košmrlj, Andrej 1981. „Statistical physics of T cell receptor development and antigen specificity“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68875.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 147-158).
Higher organisms, such as humans, have an adaptive immune system that usually enables them to successfully combat diverse (and evolving) microbial pathogens. The adaptive immune system is not preprogrammed to respond to prescribed pathogens, yet it mounts pathogen-specific responses against diverse microbes, and establishes memory of past infections (the basis of vaccination). Although major advances have been made in understanding pertinent molecular and cellular phenomena, the mechanistic principles that govern many aspects of an immune response are not known. In this thesis, I illustrate how complementary approaches from the physical and life sciences can help confront this challenge. Specifically, I describe work that brings together statistical mechanics and cell biology to shed light on how key regulators of the adaptive immune system, T cells, are selected to enable pathogen-specific responses. A model of T cell development is introduced and analyzed (computationally and analytically) by employing methods from statistical physics, such as extreme value distributions and Hamiltonian minimization. Results show that selected T cell receptors are enriched in weakly interacting amino acids. Such T cell receptors recognize (i.e. bind sufficiently strongly to) pathogens through several contacts of moderate strength, each of which makes a significant contribution to overall binding. Disrupting any contact by mutating the pathogen is statistically likely to abrogate T cell recognition of the mutated pathogen. We propose that this is the mechanism for the specificity of T cells for unknown pathogens. The T cell development model is also used to discuss one way in which host genetics can influence the selection of T cells and concomitantly the control of HIV infection. A model of the T cell selection process as diffusion in a random field of immobile traps that intermittently turn "on" and "off" is developed to estimate the escape probability of dangerous T cells that could cause autoimmune disease. Finally, and importantly, throughout this thesis, I describe, how the theoretical studies are closely synergistic/complementary with biological experiments and human clinical data.
by Andrej Košmrlj.
Ph.D.
Sandberg, Johan. „CD8⁺ T cell specificity in thymic selection and in the recognitionof antigen /“. Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3686-2/.
Der volle Inhalt der QuelleForsström, Björn. „Characterization of antibody specificity using peptide array technologies“. Doctoral thesis, KTH, Proteomik och nanobioteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155723.
Der volle Inhalt der QuelleQC 20141111
Moots, Robert J. „The fine specificity of HLA class I-restricted antigen recognition by cytotoxic T lymphocytes“. Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315327.
Der volle Inhalt der QuellePeche, Leticia Yamila. „Evidence of functional specificity within the MAGE-I family of tumor expressed proteins“. Doctoral thesis, SISSA, 2008. http://hdl.handle.net/20.500.11767/4674.
Der volle Inhalt der QuelleRIGAMONTI, VALERIA. „Development of a quantitative chemiluminescent immunoassay for the hepatitis B. antigen detection“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19390.
Der volle Inhalt der QuelleRoter, Evan. „Beta2-glycoprotein I-specific T cells: antigen specificity and role in the induction of anti-phospholipid syndrome“. Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86847.
Der volle Inhalt der QuelleLe syndrome antiphospholipide (SAPL) est une maladie autoimmune caractérisée par la présence d'auto-anticorps antiphospholipides (aPL) dirigés contre des protéines liant les phospholipides anioniques dont la β2-glycoproteine I (β2GPI), ainsi que par des manifestations cliniques incluant la thrombose et la perte foetale récurrente. Les patients souffrant du SAPL possèdent des lymphocytes T sensibles au β2GPI mais leurs origines restent inconnues. Nous posons donc l'hypothèse que des souris immunisées avec β2GPI humain produiraient des lymphocytes T sensibles au β2GPI endogène. De surcroit, nous proposons que l'oxydation, la réduction, ou la liaison du β2GPI aux phospholipides affecterait l'identification du β2GPI par les lymphocytes T. Après de nombreuses immunisations avec du β2GPI humain, des lymphocytes T de rate provenant de souris C57BL/6 produisent de l'interferon-γ (IFN-γ) en présence soit de β2GPI humain - isolé ou lié à un phospholipide anionique; de β2GPI humain réduit; ainsi, mais à un degré moindre, de β2GPI humain oxydé. Toutefois, les lymphocytes T n'ont produit pas de réponses à aucune forme de β2GPI murin qui soient. Des résultats similaires avec hybridomes de lymphocytes T sensibles au β2GPI furent aussi obtenus. D'autre part des anticorps contre le β2GPI murin furent obtenus à la suite d'immunisations, utilisant du β2GPI humain ou murin conjointement avec de l'adjuvant de Freund, mais aucune réponse de lymphocytes T sensibles au β2GPI furent observée. Nos résultats indiquent que la tolérance des lymphocytes B au β2GPI autologue peut être brisée en absence d'une réponse détectable in vitro de lymphocytes T au β2GPI.
Johansson, Daniel X. „Expression and interaction studies of recombinant human monoclonal antibodies /“. Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-137-1/.
Der volle Inhalt der QuelleBabakhani, Farah Kondori 1960. „IN VITRO PRODUCTION AND SPECIFICITY OF ANTI-DNA AUTO ANTIBODIES BY NEW ZEALAND BLACK/NEW ZEALAND WHITE F1 MICE“. Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276471.
Der volle Inhalt der QuelleLagardien, Zaida. „The characterisation of the peanut agglutinin an evolved plant lectin, with improved specificity to the Thompson Freidenriech antigen“. Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/3136.
Der volle Inhalt der QuelleIncludes bibliographical references.
Peanut agglutinin (PNA), a carbohydrate binding protein, is able to recognise and bind a number of distinct carbohydrate structures that have been implicated in a number of disease pathologies in humans. In vitro studies of PNA have previously been shown to have some specificity for the Thomson Freidenriech antigen (T-antigen), found on malignant human cells, and this specificity has made PNA an important target for protein engineering experiments aimed at improving its specificity and affinity. A number of tumour cells are characterised by altered states and patterns of glycosylation on cell surfaces and suitably engineered lectins may be able to recognise tumour specific carbohydrate structures. This study was aimed at carrying out the biophysical characterisation of a set of PNA mutants which showed apparent improvement in specificity for the T-Antigen. Previous studies have aimed to engineer this lectin in order to direct its recognition properties towards the T-antigen and away from lactose, the preliminary binding affinities of these mutants being determined using Surface Plasmon Resonance (SPR). Here a set of PNA mutants were characterised, proteins expressed and purified to determine binding activities to the T-antigen, N-Acetyl-Dlactosamine (LacNAc) and lactose through the use of Protein Micro Array technology as well as Enzyme linked immunosorbant assays (ELISA).
Bücher zum Thema "Antigen specificity"
Schenkel-Brunner, Helmut. Human blood groups: Chemical and biochemical basis of antigen specificity. Wien: Springer-Verlag, 1995.
Den vollen Inhalt der Quelle findenSchenkel-Brunner, Helmut. Human blood groups: Chemical and biochemical basis of antigen specificity. 2. Aufl. Wien: Springer, 2000.
Den vollen Inhalt der Quelle findenHuman blood groups: Chemical and biochemical basis of antigen specificity. 2. Aufl. Wien: Springer, 2000.
Den vollen Inhalt der Quelle findenHuman blood groups: Chemical and biochemical basis of antigen specificity. Wien: Springer-Verlag, 1995.
Den vollen Inhalt der Quelle findenK, Pfeffer, Hrsg. Function and specificity of [alpha/delta] T cells: International Workshop, Schloss Elmau, Bavaria, FRG, October 14-16, 1990. Berlin: Springer, 1991.
Den vollen Inhalt der Quelle findenWorkshop on Mechanisms and Specificity of HIV Entry into Host Cells (1989 San Francisco, Calif.). Mechanisms and specificity of HIV entry into host cells. New York: Plenum Press, 1991.
Den vollen Inhalt der Quelle findenSpecial Programme for Research and Training in Tropical Diseases, Foundation for Innovative New Diagnostics und Centers for Disease Control and Prevention (U.S.), Hrsg. Malaria rapid diagnostic test performance: Results of WHO product testing of malaria RDTs : round 2 (2009). Geneva: World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases, 2010.
Den vollen Inhalt der Quelle findenservice), ScienceDirect (Online, Hrsg. Tissue-specific vascular endothelial signals and vector targeting. Amsterdam: Elsevier, 2009.
Den vollen Inhalt der Quelle findenLandsteiner, Karl. The Specificity of Serological Reactions. Dover Publications, 1990.
Den vollen Inhalt der Quelle findenIvanyi, Juraj, und Tom H. M. Ottenhoff, Hrsg. Significance of antigen and epitope specificity in tuberculosis. Frontiers SA Media, 2015. http://dx.doi.org/10.3389/978-2-88919-451-3.
Der volle Inhalt der QuelleBuchteile zum Thema "Antigen specificity"
Band, H., St A. Porcelli, G. Panchamoorthy, J. Mclean, C. T. Morita, S. Ishikawa, R. L. Modlin und M. B. Brenner. „Antigens and Antigen-Presenting Molecules for γδ T Cells“. In Function and Specificity of γ/δ T Cells, 229–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_32.
Der volle Inhalt der QuelleMorris, Emma C., und J. H. F. Falkenburg. „What Defines a Good Tumour Antigen?“ In The EBMT/EHA CAR-T Cell Handbook, 11–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_3.
Der volle Inhalt der QuelleLund, Ole, Edita Karosiene, Claus Lundegaard, Mette Voldby Larsen und Morten Nielsen. „Bioinformatics Identification of Antigenic Peptide: Predicting the Specificity of Major MHC Class I and II Pathway Players“. In Antigen Processing, 247–60. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-218-6_19.
Der volle Inhalt der QuelleWang, Chunlin, Huang Huang und Mark M. Davis. „Grouping T-Cell Antigen Receptors by Specificity“. In Methods in Molecular Biology, 291–307. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2712-9_15.
Der volle Inhalt der QuelleVan Regenmortel, Marc H. V. „Specificity, Polyspecificity and Heterospecificity of Antibody-Antigen Recognition“. In HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design, 39–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32459-9_4.
Der volle Inhalt der QuelleDent, A. L., und S. M. Hedrick. „Mechanisms of Development of αβ T Cell Antigen Receptor-Bearing Cells in γδ T Cell Antigen Receptor Transgenic Mice“. In Function and Specificity of γ/δ T Cells, 121–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_17.
Der volle Inhalt der QuelleDe Libero, G., G. Casorati, N. Migone und A. Lanzavecchia. „Correlation Between TCRV Gene Usage and Antigen Specificities in Human γδ T Cells“. In Function and Specificity of γ/δ T Cells, 235–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_33.
Der volle Inhalt der QuellePowell, Daniel J., und Bruce L. Levine. „Genetically Engineered Antigen Specificity in T Cells for Adoptive Immunotherapy“. In Experimental and Applied Immunotherapy, 251–78. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-980-2_12.
Der volle Inhalt der QuelleHoloshitz, J., N. K. Bayne, D. R. McKinley und Y. Jia. „A Dichotomy Between the Cytolytic Activity and Antigen-Induced Proliferative Response of Human γδ T Cells“. In Function and Specificity of γ/δ T Cells, 167–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_22.
Der volle Inhalt der QuelleLefrancois, L., R. LeCorre, Judy Mayo, J. A. Bluestone und T. Goodman. „Selection of Vδ+ T Cell Receptors of Intestinal Intraepithelial Lymphocytes is Dependent on Class II Histocompatibility Antigen Expression“. In Function and Specificity of γ/δ T Cells, 255–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_36.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Antigen specificity"
Kleist, Sierra, Shawn Musial, Hanna Degefu, Pamela Rosato und Jordan Isaacs. „1032 Uncoupling CD39 and T cell antigen specificity in brain tumors“. In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.1032.
Der volle Inhalt der QuellePark, Seungtae, Sungsik Kim, Hee Joon Jeon, Na Ri Yoon, Bo Ryeong Lee, Sung-min Kim, Woong-Yang Park und Hyung Ju Hwang. „74 DeepTCRMatch: An effective way of computing T cells antigen specificity“. In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0074.
Der volle Inhalt der QuelleChen, Liang, Chunlin Wang und Mark Davis. „Abstract PR14: Identification of specificity TCR groups of tumor antigen specific T-cells“. In Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-pr14.
Der volle Inhalt der QuelleSantoso, S., Y. Shibata, V. Kiefel und C. Mueller-Eckhardt. „IDENTIFICATION OF YUK(b) ALLOANTIGEN ON PLATELET GLYCOPROTEIN IIIa*“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643528.
Der volle Inhalt der QuelleSilveira, A. M. V., B. Hessel und B. Blombäck. „VON WILLEBRAND FACTOR (VWF) ANTIGENS IN URINE“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644083.
Der volle Inhalt der QuelleFisher, Jonathan, anna capsomidis, Barry Flutter, Gabriel Benthal, Rebcca Wallace, Kenth Gustafsson, Karin Straathof, Martin Pule und John Anderson. „Abstract B128: Chimeric antigen receptor transduced gamma delta T lymphocytes provide enhanced tumor specificity“. In Abstracts: CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr15-b128.
Der volle Inhalt der QuelleAdams, Gregor B., Jun Feng, Atefeh Ghogha, Armen Mardiros, Ruben Rodriguez, Tassja J. Spindler, Jed Wiltzius und Tony Polverino. „Abstract 2135: Selectivity and specificity of engineered T cells expressing KITE-585, a chimeric antigen receptor targeting B-cell maturation antigen (BCMA)“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2135.
Der volle Inhalt der QuelleSchirmer, David, Richard Klar, Oxana Schmidt, Dirk Wohlleber, Wolfgang Uckert, Uwe Thiel, Felix Bohne et al. „Abstract 3202: Transgenic antigen-specific, HLA-A*02:01-allo-restricted cytotoxic T cells recognize tumor-associated target antigen STEAP1 with high specificity“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3202.
Der volle Inhalt der QuelleBanerjee, Rupak K., Meinrad Praxmaraer, Ilhan Dilber, Peter Bungay, William van Osdol und Cynthia Sung. „Numerical Simulation of Antibody Penetration in a Solid Tumor Nodule Using Finite Element Method“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0058.
Der volle Inhalt der QuelleXiao, Yang, Yueshan Huang, Yu Zhao, Fan Xu, Qin Ren, Bing He, Jianhua Yao und Xiao Liu. „Multimodal-AIR-BERT: A Multimodal Pre-trained Model for Antigen Specificity Prediction in Adaptive Immune Receptors“. In 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2023. http://dx.doi.org/10.1109/bibm58861.2023.10385479.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Antigen specificity"
Friedmann, Michael, Charles J. Arntzen und Hugh S. Mason. Expression of ETEC Enterotoxin in Tomato Fruit and Development of a Prototype Transgenic Tomato for Dissemination as an Oral Vaccine in Developing Countries. United States Department of Agriculture, März 2003. http://dx.doi.org/10.32747/2003.7585203.bard.
Der volle Inhalt der Quelle