Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Anticancer drugs.

Zeitschriftenartikel zum Thema „Anticancer drugs“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Anticancer drugs" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

D, Subba Reddy, Prasanthi G, Amruth Raj S, Hari Krishna T, Sowjanya K und Shantha Kumari K. „EVALUATION OF ANTICANCER GENERIC DRUGS AND BRANDED DRUGS“. Indian Research Journal of Pharmacy and Science 5, Nr. 1 (März 2018): 1378–91. http://dx.doi.org/10.21276/irjps.2018.5.1.16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Reese, David M. „Anticancer drugs“. Nature 378, Nr. 6557 (Dezember 1995): 532. http://dx.doi.org/10.1038/378532c0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kutty, Dr A. V. M. „Usefulness of Phytochemicals as Anticancer Drugs“. JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES 16, Nr. 1 (19.03.2019): 1–2. http://dx.doi.org/10.58739/jcbs/v09i1.7.

Der volle Inhalt der Quelle
Annotation:
Cancer is a state of uncontrolled proliferation and dedifferentiation of cells in any tissues or organs of the body. The incidence of cancer is rising alarmingly and is one of the leading causes of morbidity and mortality globally. Normal cell division is precisely a planned biological process controlled by regulatory genes and specific metabolic pathways. Exposure of normally functioning cells to carcinogens leads to mutations in the genes causing loss of control of cell division and transform into cancerous. Over a period of time, these cancer cells acquire more mutations; invade to adjoining tissues, escape the process of apoptosis and the cells become eternal. Breakaway parts of the cancer tissues / cells travel through the lymphatic and blood vessels and get deposited in other tissues / organs leading to metastasis, the spread of cancer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Atkins, Joshua H., und Leland J. Gershell. „Selective anticancer drugs“. Nature Reviews Drug Discovery 1, Nr. 7 (Juli 2002): 491–92. http://dx.doi.org/10.1038/nrd842.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Atkins, Joshua H., und Leland J. Gershell. „Selective anticancer drugs“. Nature Reviews Cancer 2, Nr. 9 (September 2002): 645–46. http://dx.doi.org/10.1038/nrc900.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bibby, M. C. „Combretastatin anticancer drugs“. Drugs of the Future 27, Nr. 5 (2002): 475. http://dx.doi.org/10.1358/dof.2002.027.05.668645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Meegan, Mary J., und Niamh M. O’Boyle. „Special Issue “Anticancer Drugs”“. Pharmaceuticals 12, Nr. 3 (16.09.2019): 134. http://dx.doi.org/10.3390/ph12030134.

Der volle Inhalt der Quelle
Annotation:
The focus of this Special Issue of Pharmaceuticals is on the design, synthesis, and molecular mechanism of action of novel antitumor, drugs with a special emphasis on the relationship between the chemical structure and the biological activity of the molecules. This Special Issue also provides an understanding of the biologic and genotypic context in which targets are selected for oncology drug discovery, thus providing a rationalization for the biological activity of these drugs and guiding the design of more effective agents. In this Special Issue of Pharmaceuticals dedicated to anticancer drugs, we present a selection of preclinical research papers including both traditional chemotherapeutic agents and newer more targeted therapies and biological agents. We have included articles that report the design of small molecules with promising anticancer activity as tubulin inhibitors, vascular targeting agents, and topoisomerase targeting agents, alongside a comprehensive review of clinically successful antibody-drug conjugates used in cancer treatment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ciarimboli, Giuliano. „Anticancer Platinum Drugs Update“. Biomolecules 11, Nr. 11 (04.11.2021): 1637. http://dx.doi.org/10.3390/biom11111637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhang, Jason Y. „Apoptosis-based anticancer drugs“. Nature Reviews Drug Discovery 1, Nr. 2 (Februar 2002): 101–2. http://dx.doi.org/10.1038/nrd742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Blagosklonny, Mikhail V. „Teratogens as Anticancer Drugs“. Cell Cycle 4, Nr. 11 (22.08.2005): 1518–21. http://dx.doi.org/10.4161/cc.4.11.2208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

KOPEČEK, JINDŘICH. „Targetable Polymeric Anticancer Drugs.“ Annals of the New York Academy of Sciences 618, Nr. 1 Temporal Cont (Februar 1991): 335–44. http://dx.doi.org/10.1111/j.1749-6632.1991.tb27253.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mundy, Gregory R., und Toshiyuki Yoneda. „Bisphosphonates as Anticancer Drugs“. New England Journal of Medicine 339, Nr. 6 (06.08.1998): 398–400. http://dx.doi.org/10.1056/nejm199808063390609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Miyamoto, Shingo, Manabu Yamada, Yasuyo Kasai, Akito Miyauchi und Kazumichi Andoh. „Anticancer drugs during pregnancy“. Japanese Journal of Clinical Oncology 46, Nr. 9 (09.06.2016): 795–804. http://dx.doi.org/10.1093/jjco/hyw073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Xing, Z., D. Li, L. Yang, Y. Xi und X. Su. „MicroRNAs and anticancer drugs“. Acta Biochimica et Biophysica Sinica 46, Nr. 3 (03.02.2014): 233–39. http://dx.doi.org/10.1093/abbs/gmu003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wallis, Denise, James Claffey, Brendan Gleeson, Megan Hogan, Helge Müller-Bunz und Matthias Tacke. „Novel zirconocene anticancer drugs?“ Journal of Organometallic Chemistry 694, Nr. 6 (März 2009): 828–33. http://dx.doi.org/10.1016/j.jorganchem.2008.08.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bradley, David. „Self-assembling anticancer drugs“. Materials Today 41 (Dezember 2020): 3. http://dx.doi.org/10.1016/j.mattod.2020.10.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Russell, Stephen J., und Kah-Whye Peng. „Viruses as anticancer drugs“. Trends in Pharmacological Sciences 28, Nr. 7 (Juli 2007): 326–33. http://dx.doi.org/10.1016/j.tips.2007.05.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kerwin, Sean. „Toward Bioengineering Anticancer Drugs“. Chemistry & Biology 9, Nr. 9 (September 2002): 956–58. http://dx.doi.org/10.1016/s1074-5521(02)00222-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Rohr, Jürgen. „Cryptophycin Anticancer Drugs Revisited“. ACS Chemical Biology 1, Nr. 12 (Dezember 2006): 747–50. http://dx.doi.org/10.1021/cb6004678.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Denny, William A. „Hypoxia-activated anticancer drugs“. Expert Opinion on Therapeutic Patents 15, Nr. 6 (Juni 2005): 635–46. http://dx.doi.org/10.1517/13543776.15.6.635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bordon, Yvonne. „Anticancer drugs copy bugs“. Nature Reviews Cancer 14, Nr. 12 (24.11.2014): 767. http://dx.doi.org/10.1038/nrc3866.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Van der Veldt, Astrid A. M., Adriaan A. Lammertsma und Egbert F. Smit. „Scheduling of anticancer drugs“. Cell Cycle 11, Nr. 23 (Dezember 2012): 4339–43. http://dx.doi.org/10.4161/cc.22187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Mundy, Gregory R. „Bisphosphonates as anticancer drugs“. Expert Opinion on Investigational Drugs 8, Nr. 12 (Dezember 1999): 2009–15. http://dx.doi.org/10.1517/13543784.8.12.2009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Bordon, Yvonne. „Anticancer drugs need bugs“. Nature Reviews Immunology 14, Nr. 1 (13.12.2013): 1. http://dx.doi.org/10.1038/nri3591.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bordon, Yvonne. „Anticancer drugs copy bugs“. Nature Reviews Immunology 14, Nr. 12 (14.11.2014): 776–77. http://dx.doi.org/10.1038/nri3775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Jefford, Michael, Linda Mileshkin, Penelope Schofield, Emilia Agalianos, Jacqui Thomson und John Zalcberg. „Discussing Expensive Anticancer Drugs“. Journal of Clinical Oncology 27, Nr. 3 (20.01.2009): 476–77. http://dx.doi.org/10.1200/jco.2008.20.1780.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Schwartsmann, G. „Anticancer drugs from nature“. Medical and Pediatric Oncology 37, Nr. 1 (2001): 79–80. http://dx.doi.org/10.1002/mpo.1173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Janus, Nicolas. „Gastrointestinal Disorders and Toxicities Induced By Anticancer Drugs. Another Risk Factor of Bleeding in Cancer-Associated Thrombosis“. Blood 136, Supplement 1 (05.11.2020): 36. http://dx.doi.org/10.1182/blood-2020-141814.

Der volle Inhalt der Quelle
Annotation:
Introduction Anticancer treatments has been changing since decades, evolving from chemotherapy (platinum salts) to recent check-point inhibitors. Nausea, vomiting and diarrhoea are common adverse events of anticancer drugs, despites the fact that some supportive care drugs can manage these adverse events. Gastro-intestinal (GI) disorders/toxicities are also important. Such as gastric/duodenal ulcer, gastritis, stomatitis, colitis, esophagitis... Cancer-associated-thrombosis (CAT) patients were also reported to be exposed to such GI disorders/toxicities and several publications recommended to consider these GI disorders/toxicities when choosing an anticoagulant in CAT (Carrier M. Curr Oncol 2018; Moik F. ESMO Open 2020). However, little is known about the nature of the anticancer drugs that CAT patients are receiving. The aim of this work was to check all the anticancer's SmPCs (Summary of Product Characteristics) on the EMA website for GI disorders. Methods All SmPCs of anticancer drugs indicated for lung cancer were checked on the EMA website. All adverse events regarding GI disorders/toxicities were collected. The frequency of adverse events used was the following: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1000); very rare (< 1/10,000). However, it was decided to mainly focus on very common and common ones. Old anticancer drugs SmPCs (platinium salts...) were checked on electronic medicines compendium (medicines.org.uk), because these old SmPCs are not always available on the EMA website. Generics, biosimilars and drugs without a licence were excluded. Results Twenty-eight anticancer drugs were identified with a mix of traditional chemotherapies (platinum salts...), tyrosine kinase inhibitors (nib) and monoclonal antibodies (mab). Among these 28 anticancer drugs, 26 had at least one very common/common GI disorders/toxicities. Obviously, vomiting (82.1%) and diarrhoea (89.3%) are very well-known, but it was interesting to see that many anticancer drugs were associated with other very common/common GI toxicities such as stomatitis (71.4%) and colitis (10.7%). Additionally, several drugs (35.7%) were exposing to GI bleeding and/or GI perforation but these last adverse events were less common. Unfortunately, the SmPCs did not include data about the GI profile of the patients during the trials. Conclusion Monreal M et al reported in 1991 that acute gastroduodenal lesion was found in 21% of patients with venous thromboembolism, but there are no dedicated study about the incidence of GI disorders in CAT patients. This work reported that GI disorders/toxicities were common in anticancer drug's SmPCs. Consequently, it is important to be aware of this before initiating an anticoagulant treatment. However, this work had limitations. Indeed, these adverse events were reported in the SmPCs, based mainly on cancer trials and not on CAT trials. Furthermore, clinical trials and SmPCs may not always reflect the real clinical setting. Finally, lung cancer patients are usually receiving anticancer regimens that include several anticancer drugs, so the potential impact of GI disorders/toxicities from 2 or 3 anticancer drugs on a single patients could be greater. Nevertheless, it sounds reasonable to check for GI disorders/toxicities risks in order to initiate an adequate anticoagulant treatment in CAT patients and during follow-up. Disclosures Janus: Guerbet:Research Funding;B-Braun:Honoraria;LEO Pharma A/S:Current Employment, Honoraria;Fresenius Medical Care:Honoraria;Amgen:Honoraria, Research Funding;TEVA:Research Funding;Daichii-Sankyo:Honoraria, Research Funding;Roche:Honoraria, Research Funding;Vifor Pharma:Honoraria, Research Funding;Gilead:Honoraria, Research Funding;Novartis:Honoraria;Pierre Fabre Oncology:Research Funding;Bayer:Honoraria, Research Funding;Pfizer:Consultancy, Honoraria;IPSEN:Honoraria.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Li, Dong Hong, Jun Lin Diao, Ke Gui Yu und Cheng He Zhou. „Synthesis and anticancer activities of porphyrin induced anticancer drugs“. Chinese Chemical Letters 18, Nr. 11 (November 2007): 1331–34. http://dx.doi.org/10.1016/j.cclet.2007.09.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

&NA;. „Anticancer drugs from the sea“. Inpharma Weekly &NA;, Nr. 1417 (Dezember 2003): 4. http://dx.doi.org/10.2165/00128413-200314170-00007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Evans, William E., und Mary V. Relling. „Clinical Pharmacokinetics-Pharmacodynamicsof Anticancer Drugs“. Clinical Pharmacokinetics 16, Nr. 6 (Juni 1989): 327–36. http://dx.doi.org/10.2165/00003088-198916060-00001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Carcone, Bernard, und Dionyssis Pongas. „Cardiovascular toxicity of anticancer drugs“. Sang thrombose vaisseaux 26, Nr. 4 (Juli 2014): 188–96. http://dx.doi.org/10.1684/stv.2014.0849.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Amelio, Ivano, Andrey Lisitsa, Richard Knight, Gerry Melino und Alexey Antonov. „Polypharmacology of Approved Anticancer Drugs“. Current Drug Targets 18, Nr. 5 (24.02.2017): 534–43. http://dx.doi.org/10.2174/1389450117666160301095233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Jeanny B. Aragon-Ching, Haiqing Li, Erin R. Gardner und William D. Figg. „Thalidomide Analogues as Anticancer Drugs“. Recent Patents on Anti-Cancer Drug Discovery 2, Nr. 2 (01.06.2007): 167–74. http://dx.doi.org/10.2174/157489207780832478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Meegan, Mary J., und Niamh M. O’Boyle. „Special Issue “Anticancer Drugs 2021”“. Pharmaceuticals 15, Nr. 4 (14.04.2022): 479. http://dx.doi.org/10.3390/ph15040479.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Benjamin Garbutcheon-Singh, K., Maxine P. Grant, Benjamin W. Harper, Anwen M. Krause-Heuer, Madhura Manohar, Nikita Orkey und Janice R. Aldrich-Wright. „Transition Metal Based Anticancer Drugs“. Current Topics in Medicinal Chemistry 11, Nr. 5 (01.03.2011): 521–42. http://dx.doi.org/10.2174/156802611794785226.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Fujita, Ken-ichi. „Cytochrome P450 and Anticancer Drugs“. Current Drug Metabolism 7, Nr. 1 (01.01.2006): 23–37. http://dx.doi.org/10.2174/138920006774832587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wallace, H. M., und A. V. Fraser. „Polyamine analogues as anticancer drugs“. Biochemical Society Transactions 31, Nr. 2 (01.04.2003): 393–96. http://dx.doi.org/10.1042/bst0310393.

Der volle Inhalt der Quelle
Annotation:
Just over 30 years ago, the late Diane Russell published the first in a series of papers linking polyamines and cancer. These early studies led to a flurry of research activity in the polyamine field that continues to this day attempting to identify a role for the polyamines in cancer development, treatment and/or prevention. The recognition that polyamines are critical for the growth of cancer cells, and consequently the identification of their metabolic pathways as a target for therapeutic intervention, led to the development of a number of useful inhibitors of polyamine biosynthesis. Arguably the most significant addition to the polyamine field in the last 30 years was the synthesis of α-difluoromethylornithine (DFMO), which is being tested currently as a cancer chemopreventative agent in man and is used also as a highly effective trypanocidal agent. Although an extremely useful tool experimentally, DFMO has been disappointing in clinical trials with little therapeutic efficacy. Despite this setback, the polyamine pathway is still considered a viable target for chemotherapeutic intervention. This has led to the development of the polyamine analogues as multifunctional inhibitors that will produce inhibition of tumour cell growth, polyamine depletion and optimum therapeutic efficacy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Hyodo, Kenji, Eiichi Yamamoto, Takuya Suzuki, Hiroshi Kikuchi, Makoto Asano und Hiroshi Ishihara. „Development of Liposomal Anticancer Drugs“. Biological and Pharmaceutical Bulletin 36, Nr. 5 (2013): 703–7. http://dx.doi.org/10.1248/bpb.b12-01106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Powis, Garth, Miles P. Hacker und Graziano C. Carlon. „The Toxicity of Anticancer Drugs“. Critical Care Medicine 21, Nr. 7 (Juli 1993): 1101. http://dx.doi.org/10.1097/00003246-199307000-00034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Baumann, F., und R. Preiss. „Cyclophosphamide and related anticancer drugs“. Journal of Chromatography B: Biomedical Sciences and Applications 764, Nr. 1-2 (November 2001): 173–92. http://dx.doi.org/10.1016/s0378-4347(01)00279-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Tjaden, U. R., und E. A. De Bruijn. „Chromatographic analysis of anticancer drugs“. Journal of Chromatography B: Biomedical Sciences and Applications 531 (Oktober 1990): 235–94. http://dx.doi.org/10.1016/s0378-4347(00)82286-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Sapra, P., und T. M. Allen. „Ligand-targeted liposomal anticancer drugs“. Progress in Lipid Research 42, Nr. 5 (September 2003): 439–62. http://dx.doi.org/10.1016/s0163-7827(03)00032-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Tanigawara, Y. „Pharmaco-Metabolomics for Anticancer Drugs“. Annals of Oncology 23 (Oktober 2012): xi55. http://dx.doi.org/10.1016/s0923-7534(20)32076-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Yoshioka, T. „Drugs Interaction of Anticancer Agents“. Annals of Oncology 23 (Oktober 2012): xi65. http://dx.doi.org/10.1016/s0923-7534(20)32111-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Muers, Mary. „Transgenerational effects of anticancer drugs“. Nature Reviews Genetics 13, Nr. 3 (14.02.2012): 148. http://dx.doi.org/10.1038/nrg3190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Gosland, Michael P., und Bert L. Lum. „The Anticancer Drugs, 2nd Edition“. Annals of Pharmacotherapy 29, Nr. 3 (März 1995): 320. http://dx.doi.org/10.1177/106002809502900321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Meyer, G. „Pulmonary Toxicity of Anticancer Drugs“. Annals of Oncology 25 (September 2014): iv33. http://dx.doi.org/10.1093/annonc/mdu310.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Imran, Muhammad, Wagma Ayub, Ian S. Butler und Zia-ur-Rehman. „Photoactivated platinum-based anticancer drugs“. Coordination Chemistry Reviews 376 (Dezember 2018): 405–29. http://dx.doi.org/10.1016/j.ccr.2018.08.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

SALVIK, MILAN, JUN WU und CHRISTOPHER RILEY. „Salivary Excretion of Anticancer Drugs“. Annals of the New York Academy of Sciences 694, Nr. 1 Saliva as a D (September 1993): 319–21. http://dx.doi.org/10.1111/j.1749-6632.1993.tb18377.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie