Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Anticancer drugs“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Anticancer drugs" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Anticancer drugs"
D, Subba Reddy, Prasanthi G, Amruth Raj S, Hari Krishna T, Sowjanya K und Shantha Kumari K. „EVALUATION OF ANTICANCER GENERIC DRUGS AND BRANDED DRUGS“. Indian Research Journal of Pharmacy and Science 5, Nr. 1 (März 2018): 1378–91. http://dx.doi.org/10.21276/irjps.2018.5.1.16.
Der volle Inhalt der QuelleReese, David M. „Anticancer drugs“. Nature 378, Nr. 6557 (Dezember 1995): 532. http://dx.doi.org/10.1038/378532c0.
Der volle Inhalt der QuelleKutty, Dr A. V. M. „Usefulness of Phytochemicals as Anticancer Drugs“. JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES 16, Nr. 1 (19.03.2019): 1–2. http://dx.doi.org/10.58739/jcbs/v09i1.7.
Der volle Inhalt der QuelleAtkins, Joshua H., und Leland J. Gershell. „Selective anticancer drugs“. Nature Reviews Drug Discovery 1, Nr. 7 (Juli 2002): 491–92. http://dx.doi.org/10.1038/nrd842.
Der volle Inhalt der QuelleAtkins, Joshua H., und Leland J. Gershell. „Selective anticancer drugs“. Nature Reviews Cancer 2, Nr. 9 (September 2002): 645–46. http://dx.doi.org/10.1038/nrc900.
Der volle Inhalt der QuelleBibby, M. C. „Combretastatin anticancer drugs“. Drugs of the Future 27, Nr. 5 (2002): 475. http://dx.doi.org/10.1358/dof.2002.027.05.668645.
Der volle Inhalt der QuelleMeegan, Mary J., und Niamh M. O’Boyle. „Special Issue “Anticancer Drugs”“. Pharmaceuticals 12, Nr. 3 (16.09.2019): 134. http://dx.doi.org/10.3390/ph12030134.
Der volle Inhalt der QuelleCiarimboli, Giuliano. „Anticancer Platinum Drugs Update“. Biomolecules 11, Nr. 11 (04.11.2021): 1637. http://dx.doi.org/10.3390/biom11111637.
Der volle Inhalt der QuelleZhang, Jason Y. „Apoptosis-based anticancer drugs“. Nature Reviews Drug Discovery 1, Nr. 2 (Februar 2002): 101–2. http://dx.doi.org/10.1038/nrd742.
Der volle Inhalt der QuelleBlagosklonny, Mikhail V. „Teratogens as Anticancer Drugs“. Cell Cycle 4, Nr. 11 (22.08.2005): 1518–21. http://dx.doi.org/10.4161/cc.4.11.2208.
Der volle Inhalt der QuelleDissertationen zum Thema "Anticancer drugs"
Apps, MIchael Garry. „Platinum anticancer drugs and drug delivery systems“. Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14409.
Der volle Inhalt der QuelleKozlowska, Hanna. „Interaction of dexrazoxane with anticancer drugs“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0001/MQ32158.pdf.
Der volle Inhalt der QuelleTao, Zhimin. „Analysis of cytotoxicity of anticancer drugs“. Related electronic resource:, 2007. http://proquest.umi.com/pqdweb?did=1407688361&sid=4&Fmt=2&clientId=3739&RQT=309&VName=PQD.
Der volle Inhalt der QuelleLiu, Tong. „The synthesis of novel anticancer drugs“. Thesis, University of Glasgow, 2003. http://theses.gla.ac.uk/4464/.
Der volle Inhalt der QuelleSong, Di. „Bladder tissue pharmacokinetics of anticancer drugs /“. The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487940308433249.
Der volle Inhalt der QuelleRatcliffe, Andrew J. „Synthesis of non-mutagenic anticancer drugs“. Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378598.
Der volle Inhalt der QuellePettersson, Hanna Ilse. „Quinolinequinones as anticancer agents“. Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249038.
Der volle Inhalt der QuelleWang, Shining. „DRUG DEVELOPMENT OF TARGETED ANTICANCER DRUGS BASED ON PK/PD INVESTIGATIONS“. Diss., Temple University Libraries, 2008. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/2535.
Der volle Inhalt der QuellePh.D.
EGFR inhibitors, such as gefitinib, are examples of targeted anticancer drugs whose drug sensitivity is related to gene mutations that adds a pharmacogenetic [PG] dimension to any pharmacokinetic [PK] and pharmacodynamic [PD] analysis. The goal of this project was to characterize the PK/PD properties of gefitinib in tumors and then apply these results to design rational drug design regimens, and provide a foundation for future studies with EGFR inhibitors. Progressions of in vitro and in vivo studies were completed to understand the PK and PD behavior of gefitinib. In vitro cytotoxicity assays were first conducted to confirm the gefitinib sensitivity differences in a pair of human glioblastoma cell lines, LN229-wild-type EGFR and LN229-EGFRvIII mutant, an EGFR inhibitor-sensitizing mutation. Subsequent in vitro PD studies identified phosphorylated-ERK1/2 (pERK) as a common PD marker for both cell lines. To describe the most salient features of drug disposition and dynamics in the tumor, groups of mice bearing either subcutaneous LN229-wild-type EGFR or LN229-EGFRvIII mutant tumors were administered gefitinib at doses of 10 mg/kg intravenously (IV), 50 mg/kg intraarterially (IA) and 150 mg/kg orally (PO). In each group, gefitinib plasma and tumor concentrations were quantitated, as were tumoral pERK. Hybrid physiologically-based PK/PD models were developed for each tumor type, which consisted of a forcing function describing the plasma drug concentration-profile, a tumor compartment depicting drug disposition in the tumor, and a mechanistic target-response PD model characterizing pERK in the tumor. Gefitinib showed analogous PK properties in each tumor type, yet different PD characteristics consistent with the EGFR status of the tumors. Using the PK/PD model for each tumor type, simulations were done to define multiple-dose regimens for gefitinib that yielded equivalent PD profiles of pERK in each tumor type. Based on the designed PK/PD equivalent dosing regimens for each tumor type, gefitinib 150 mg/kg PO qd × 15 days and 65 mg/kg PO qd × 15 days multiple-dose studies were conducted in wild-type EGFR and EGFRvIII mutant tumor groups, respectively. In each tumor group, gefitinib plasma and tumor concentrations were measured on both day 1 and day 15, as were tumoral amounts of pERK. Different from single-dose model simulations, gefitinib showed nonlinear PK property in the wild-type tumor due to the down-regulation of membrane transporter ABCG2. Moreover, acquired resistance of tumoral pERK inhibition was observed in both tumor types. Nevertheless, gefitinib had an analogous growth suppression action in both tumor groups, supporting the equivalent PD dosing strategy. Overall, single-dose gefitinib PK/PD investigations in a pair of genetically distinct glioblastomas facilitated the development of hybrid physiologically-based PK/PD models for each tumor type, and further introduced a novel concept of PK/PD equivalent dosing regimens which could be applied in novel drug development paradigms. Preliminary multiple-dose gefitinib studies revealed more complex PK/PD characteristics that needed to be further explored.
Temple University--Theses
Leczkowska, Anna. „Non-covalent DNA-binding ruthenium anticancer drugs“. Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1695/.
Der volle Inhalt der QuelleYarema, Kevin J. (Kevin Jon). „Cellular responses to platinum-based anticancer drugs“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33495.
Der volle Inhalt der QuelleBücher zum Thema "Anticancer drugs"
1938-, Pratt William B., und Pratt William B. 1938-, Hrsg. The anticancer drugs. 2. Aufl. New York: Oxford University Press, 1994.
Den vollen Inhalt der Quelle findenGarth, Powis, Hrsg. Anticancer drugs: Reactive metabolism and drug interactions. Oxford, England: Pergamon Press, 1994.
Den vollen Inhalt der Quelle findenAvendaño, Carmen. Medicinal chemistry of anticancer drugs. Amsterdam: Elsevier, 2008.
Den vollen Inhalt der Quelle findenConvention, United States Pharmacopeial. Fact sheets on anticancer drugs. [Washington, D.C.?]: National Cancer Institute [distributor], 1994.
Den vollen Inhalt der Quelle findenNational Cancer Institute (U.S.), Hrsg. Fact sheets on anticancer drugs. [Bethesda, Md.?: National Cancer Institute, 1994.
Den vollen Inhalt der Quelle findenSotiris, Missailidis, Hrsg. Anticancer therapeutics. Chichester: John Wiley & Sons, 2008.
Den vollen Inhalt der Quelle finden1964-, Spencer Peter, und Holt Walter, Hrsg. Anticancer drugs: Design, delivery and pharmacology. Hauppauge, NY: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenSaeidnia, Soodabeh. New Approaches to Natural Anticancer Drugs. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14027-8.
Der volle Inhalt der QuelleHacker, Miles P., John S. Lazo und Thomas R. Tritton, Hrsg. Organ Directed Toxicities of Anticancer Drugs. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-2023-4.
Der volle Inhalt der QuelleHildebrand, Jerzy, Hrsg. Neurological Adverse Reactions to Anticancer Drugs. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76142-3.
Der volle Inhalt der QuelleBuchteile zum Thema "Anticancer drugs"
Schacter, Lee, Marcel Rozencweig, Claude Nicaise, Renzo Canetta, Susan Kelley und Laurie Smaldone. „Anticancer Drugs“. In Early Phase Drug Evaluation in Man, 644–54. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-10705-6_49.
Der volle Inhalt der QuelleSchwab, Matthias, Elke Schaeffeler und Hiltrud Brauch. „Anticancer Drugs“. In Metabolism of Drugs and Other Xenobiotics, 365–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch13.
Der volle Inhalt der QuelleIsnard-Bagnis, Corinne, Vincent Launay-Vacher, Svetlana Karie und Gilbert Deray. „Anticancer drugs“. In Clinical Nephrotoxins, 511–35. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-84843-3_22.
Der volle Inhalt der QuelleZhao, Le, Zengyi Shao und Jacqueline V. Shanks. „Anticancer Drugs“. In Industrial Biotechnology, 237–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527807833.ch8.
Der volle Inhalt der QuelleGanguly, A. K., und Sesha Sridevi Alluri. „Anticancer Drugs“. In Medicinal Chemistry, 89–101. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003182573-4.
Der volle Inhalt der QuelleIsnard-Bagnis, Corinne, und Gilbert Deray. „Anticancer drugs“. In Clinical Nephrotoxins, 353–72. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/1-4020-2586-6_18.
Der volle Inhalt der QuelleCateni, Francesca, und Marina Zacchigna. „PEG–Anticancer Drugs“. In Macromolecular Anticancer Therapeutics, 221–63. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0507-9_6.
Der volle Inhalt der QuelleKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee und Chan Kim. „Immunotherapeutic Anticancer Drugs and Other Miscellaneous Anticancer Drugs“. In Cancer Drug Discovery, 135–53. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_7.
Der volle Inhalt der QuelleKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee und Chan Kim. „Alkylating Anticancer Drugs“. In Cancer Drug Discovery, 71–94. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_4.
Der volle Inhalt der QuelleKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee und Chan Kim. „Antimetabolic Anticancer Drugs“. In Cancer Drug Discovery, 95–112. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Anticancer drugs"
Ma, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin und Wei Li. „A Perfused Two-Chamber System for Anticancer Drug Screening“. In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Der volle Inhalt der QuelleSchiestl, Robert H., Michael Davoren und Yelena Rivina. „Abstract 1793: Novel radiation mitigators and anticancer drugs“. In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1793.
Der volle Inhalt der QuelleSettleman, Jeffrey E. „Abstract CN06-04: Reversible tolerance to anticancer drugs.“ In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-cn06-04.
Der volle Inhalt der QuelleSchiestl, Robert H., Yelena Rivina und Michael Davoren. „Abstract 3729: Novel radiation mitigators and anticancer drugs“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3729.
Der volle Inhalt der QuelleZhukovets, T. A., M. А. Khancheuski, I. V. Koktysh, E. I. Kvasyuk und A. G. Sysa. „ANTIOXIDANT EFFECTS OF EMOXYPINE AS ADJUVANT OF ANTI-CANCER DRUGS“. In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-52-55.
Der volle Inhalt der QuelleCao, Tingying, Xiangdong Gao und Yueqing Gu. „Biodegradable polylactide microspheres containing anticancer drugs used as injectable drug delivery system“. In 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381726.
Der volle Inhalt der QuelleNikkhah, Mehdi, Jeannine S. Strobl und Masoud Agah. „Study the Effect of Anticancer Drugs on Human Breast Cancer Cells Using Three Dimensional Silicon Microstructures“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66680.
Der volle Inhalt der QuelleJ., Alex Mathew, und Nixon Raj N. „Insilico Docking Studies on Anticancer Drugs for Breast Cancer“. In 2009 International Association of Computer Science and Information Technology - Spring Conference. IEEE, 2009. http://dx.doi.org/10.1109/iacsit-sc.2009.12.
Der volle Inhalt der QuelleShrestha, Gajendra, Michael Xiao, Richard Robison, Larry L. St Clair und Kim O'Neill. „Abstract 3220: Lichen derived polyphenols as potential anticancer drugs“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3220.
Der volle Inhalt der QuelleRibeiro, Tatiane. „23 Evidence-based medicine challenges in new anticancer drugs“. In EBM Live Abstracts, July 2019, Oxford, UK. BMJ Publishing Group Ltd, 2019. http://dx.doi.org/10.1136/bmjebm-2019-ebmlive.104.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Anticancer drugs"
Howard, David, Peter Bach, Ernst Berndt und Rena Conti. Pricing in the Market for Anticancer Drugs. Cambridge, MA: National Bureau of Economic Research, Januar 2015. http://dx.doi.org/10.3386/w20867.
Der volle Inhalt der QuelleZhang, Jian-Ting. Molecular Study of Interactions between P-Glycoprotein and Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada300162.
Der volle Inhalt der QuelleBiswas, Kaustav, und Samuel J. Danishefsky. Synthesis of Epothilone Analogs: Toward the Development of Potent Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada409475.
Der volle Inhalt der QuelleInoue, Takashi, und Mamoru Narukawa. Anti-tumor efficacy of anti-PD-1/PD-L1 antibodies in combination with other anticancer drugs in solid tumors: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Oktober 2022. http://dx.doi.org/10.37766/inplasy2022.10.0004.
Der volle Inhalt der QuelleFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2007. http://dx.doi.org/10.21236/ada486569.
Der volle Inhalt der QuelleFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada481424.
Der volle Inhalt der QuelleBeerman, Terry A. Discovery of DNA Binding Anticancer Drugs That Target Oncogenic Transcription Factors Associated With Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2001. http://dx.doi.org/10.21236/ada403322.
Der volle Inhalt der QuelleVenedicto, Melissa, und Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, Oktober 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Der volle Inhalt der QuelleMacedo, Luciana, und Linda Malkas. The Human Breast Cancer DNA Synthesome Can Serve as a Novel In Vitro Model System for Studying the Mechanism of Action of Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, Juli 2000. http://dx.doi.org/10.21236/ada393926.
Der volle Inhalt der QuelleJiang, Haiyan. The Human Breast Cancer Cell DNA Synthesome Can Serve as a Novel in Vitro Model System for Studying the Mechanism of Action of Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, Juli 1999. http://dx.doi.org/10.21236/ada384124.
Der volle Inhalt der Quelle