Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Anticancer chemotherapy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Anticancer chemotherapy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Anticancer chemotherapy"
Hayashi, S., S. Maruoka, N. Takahashi und S. Hashimoto. „Carotidynia after anticancer chemotherapy“. Singapore Medical Journal 55, Nr. 09 (September 2014): e142-e144. http://dx.doi.org/10.11622/smedj.2014127.
Der volle Inhalt der QuelleKvolik, S., L. Glavas-Obrovac, K. Sakic, D. Margaretic und I. Karner. „Anaesthetic implications of anticancer chemotherapy“. European Journal of Anaesthesiology 20, Nr. 11 (11.07.2005): 859–71. http://dx.doi.org/10.1017/s026502150300139x.
Der volle Inhalt der QuelleKvolik, S., L. Glavas-Obrovac, K. Sakic, D. Margaretic und I. Karner. „Anaesthetic implications of anticancer chemotherapy“. European Journal of Anaesthesiology 20, Nr. 11 (November 2003): 859–71. http://dx.doi.org/10.1097/00003643-200311000-00002.
Der volle Inhalt der QuelleF. Goncalves, R., G. Kriechammer und M. P.M. Marques. „MGBG in Combined Anticancer Chemotherapy“. Letters in Drug Design & Discovery 8, Nr. 10 (01.12.2011): 897–903. http://dx.doi.org/10.2174/157018011797655197.
Der volle Inhalt der QuelleKratz, Felix, Ivonne A Müller, Claudia Ryppa und André Warnecke. „Prodrug Strategies in Anticancer Chemotherapy“. ChemMedChem 3, Nr. 1 (11.01.2008): 20–53. http://dx.doi.org/10.1002/cmdc.200700159.
Der volle Inhalt der QuelleKris, M. G., Fausto Roila, Pieter H. M. De Mulder und Michel Marty. „Delayed emesis following anticancer chemotherapy“. Supportive Care in Cancer 6, Nr. 3 (27.04.1998): 228–32. http://dx.doi.org/10.1007/s005200050158.
Der volle Inhalt der QuelleKris, M. G., K. M. W. Pisters und L. Hinkley. „Delayed emesis following anticancer chemotherapy“. Supportive Care in Cancer 2, Nr. 5 (September 1994): 297–300. http://dx.doi.org/10.1007/bf00365581.
Der volle Inhalt der QuelleHennes, Emily R., Michael Reed, Mary Mably, Jason Jared, Jason J. Bergsbaken, Dustin Deming, Natalie Callander und Ruth O’Regan. „Implementation of a chemotherapy stewardship process“. American Journal of Health-System Pharmacy 77, Nr. 15 (04.07.2020): 1243–48. http://dx.doi.org/10.1093/ajhp/zxaa157.
Der volle Inhalt der QuelleBen Kridis, W., A. Khanfir und M. Frikha. „ACUTE PANCREATITIS INDUCED BY ANTICANCER CHEMOTHERAPY“. Acta Clinica Belgica 68, Nr. 4 (Juli 2013): 309–10. http://dx.doi.org/10.2143/acb.3351.
Der volle Inhalt der QuelleMa, Yuting, Oliver Kepp, François Ghiringhelli, Lionel Apetoh, Laetitia Aymeric, Clara Locher, Antoine Tesniere et al. „Chemotherapy and radiotherapy: Cryptic anticancer vaccines“. Seminars in Immunology 22, Nr. 3 (Juni 2010): 113–24. http://dx.doi.org/10.1016/j.smim.2010.03.001.
Der volle Inhalt der QuelleDissertationen zum Thema "Anticancer chemotherapy"
Fryatt, Tara. „Quinolinequinones as bioreductive anticancer agents“. Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302535.
Der volle Inhalt der QuelleWard, T. H. „Bioreductive anticancer drugs : a comet study on mechanisms and DNA damage“. Thesis, University of Salford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245022.
Der volle Inhalt der QuelleRoffey, Jonathan R. A. „The synthesis of indole containing anticancer compounds“. Thesis, Loughborough University, 1996. https://dspace.lboro.ac.uk/2134/10935.
Der volle Inhalt der QuelleLant, Neil Joseph. „The synthesis and evaluation of anti-melanoma drugs“. Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341748.
Der volle Inhalt der QuelleCroughton, Karen. „Novel pharmacology of the lipophilic antifolate methylbenzoprim“. Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368236.
Der volle Inhalt der QuelleRivero-Müller, Adolfo. „Speciation and reactivity of the antineoplastic copper-based compound : casiopeina II“. Thesis, University of Surrey, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301319.
Der volle Inhalt der QuelleStow, Martin William. „Molecular analysis of verapamil hypersensitive multidrug resistant hamster cell lines“. Thesis, University of York, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258425.
Der volle Inhalt der QuelleHighfield, Jacqueline Ann. „The synthesis and testing of novel anticancer agents related to bleomycin“. Thesis, Brunel University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263514.
Der volle Inhalt der QuelleNuthalapati, Silpa. „PRECLINICAL PHARMACOKINETIC AND PHARMACODYNAMIC EVALUATION OF NEW ANTICANCER AGENTS FOR BRAIN TUMOR CHEMOTHERAPY“. Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/181390.
Der volle Inhalt der QuellePh.D.
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults for which overall prognosis remains poor despite recent treatment advances, thus emphasizing the need for developing effective therapeutic agents. Styryl sulfones belong to a class of non-ATP competitive antineoplastic agents in early stage clinical trials. Detailed investigation of the pharmacokinetics (PKs) and pharmacodynamics (PDs) of novel agents in the preclinical stage plays a pivotal role in drug development that could be applied to guide clinical trials. The main goal of the project was to undertake comprehensive PK and PD evaluation of new agents for brain tumor therapy and in the process establish a PK/PD strategy for the development of such novel agents. The current project was aimed to evaluate the potential of a styryl benzyl sulfone compound, ON01910.Na, as a chemotherapeutic agent for the treatment of GBMs using PK/PD approaches. First, the systemic pharmacokinetics of ON01910 was characterized following single dose intravascular administration of ON01910.Na in healthy mice over a 50-fold dose range of 5 mg/kg - 250 mg/kg. Secondly, an evaluation of the brain and brain tumor disposition of ON01910 was conducted in an orthotopic U87 glioma model in mice using a steady-state dosing regimen, and, in addition, using the same brain tumor model its pharmacodynamic and antiangiogenic activity were determined following multiple dosing. ON01910 exhibited nonlinear pharmacokinetics in the dose range of 50 mg/kg - 250 mg/kg. It showed inadequate brain and brain tumor penetration and insignificant antiangiogenic and antiproliferative activity. The limited brain tumor penetration and activity of ON01910 in the intracerebral glioma model led to the evaluation of ON013105, a prodrug of its more lipophilic anticancer congener, ON013100. A similar PK/PD approach as for ON01910.Na was applied wherein systemic pharmacokinetic properties of ON013105 and its active form, ON013100 in healthy mice, as well as an analysis of their brain and brain tumor distribution following steady-state dosing regimen were determined following administration of prodrug. The active form, ON013100 showed appreciable brain and brain tumor penetration while the prodrug did not. Subsequent pharmacodynamic investigations conducted in vitro identified phosphorylated-ERK (pERK) as a PD marker. To assess time-dependent PK/PD characteristics, mice bearing intracerebral U87 glioma were administered ON013105 at 100 mg/kg intravenously and plasma, brain and brain tumor concentrations of ON013105 and its active form, ON013100 were quantitated as well as tumoral pERK levels. Further, a PK-PD model was developed that characterized plasma, brain and brain tumor concentration-time profiles of ON013105 and ON013100 and tumoral pERK levels. In summary, a PK/PD-driven approach was applied to evaluate and select novel compounds that may have potential in the treatment of brain tumors. The progression of studies yielded one compound, ON013100 that possessed favorable brain tumor distribution and showed PD activity that warrant continued evaluation.
Temple University--Theses
Page, Simon Matthew. „Ruthenium anticancer complexes : a targeted approach to enzyme inhibition“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608027.
Der volle Inhalt der QuelleBücher zum Thema "Anticancer chemotherapy"
Wani, Mohmmad Younus, und Manzoor Ahmad Malik. Gold and its Complexes in Anticancer Chemotherapy. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6314-4.
Der volle Inhalt der QuelleMacromolecular anticancer therapeutics. New York: Springer Verlag, 2009.
Den vollen Inhalt der Quelle findenLaurell, Göran. Ototoxicity of the anticancer drug cisplatin: Clinical and experimental aspects. Stockholm, Sweden: Distributed by Almqvist & Wiksell Periodical Co., 1991.
Den vollen Inhalt der Quelle findenAvendaño, Carmen. Medicinal chemistry of anticancer drugs. Amsterdam: Elsevier, 2008.
Den vollen Inhalt der Quelle findenJ, Houghton Peter, und Houghton Janet A, Hrsg. Preclinical and clinical modulation of anticancer drugs. Boca Raton: CRC Press, 1993.
Den vollen Inhalt der Quelle findenLipp, H. P. Prevention and management of anticancer drug toxicity: The significance of clinical pharmacokinetics. Jena: Univ.-Verlag, 1995.
Den vollen Inhalt der Quelle findenInternational, Interface of "Clinical and Laboratory Responses to Anticancer Drugs" (1st 1989 Villejuif France). Anticancer drugs : proceedings of the first International Interface of "Clinical and Laboratory Responses to Anticancer Drugs," March 13th-15th, 1989, Villejuif, France =: Médicaments anticancéreux : actes de la première confrontation internationale des "Réponses cliniques et expérimentales aux médicaments anticancéreux" 13-15 Mars 1989, Villejuif, France. Paris: INSERM, 1989.
Den vollen Inhalt der Quelle findenInternational Interface of "Clinical and Laboratory Responses to Anticancer Drugs" (1st 1989 Villejuif, France). Anticancer drugs: Proceedings of the first International Interface of "Clinical and Laboratory Responses to Anticancer Drugs," March 13th-15th, 1989, Villejuif, France = Médicaments anticancéreux : actes de la première confrontation internationale des "Réponses cliniques et expérimentales aux médicaments anticancéreux," 13-15 Mars 1989, Villejuif, France. Herausgegeben von Lampidis T. J, Robert Jacques M. D, Tapiero H und Institut national de la santé et de la recherche médicale (France). Paris, France: Editions INSERM ; London : J. Libbey Eurotext, 1989.
Den vollen Inhalt der Quelle findenZhong yao kang ai huo xing cheng fen: Anticancer active components in TCM. Beijing: Ke xue chu ban she, 2012.
Den vollen Inhalt der Quelle findenP, Hacker Miles, Lazo John S und Tritton Thomas R, Hrsg. Organ directed toxicities of anticancer drugs: Proceedings of the First International Symposium on the Organ Directed Toxicities of Anticancer Drugs, Burlington, Vermont, USA, June 4-6, 1987. Boston: Nijhoff, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Anticancer chemotherapy"
Schabel, F. M. „Rationale for Perioperative Anticancer Treatment“. In Perioperative Chemotherapy, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82432-6_1.
Der volle Inhalt der QuelleStone, Jeff, und Susan M. Blaney. „Intrathecal Chemotherapy“. In Handbook of Anticancer Pharmacokinetics and Pharmacodynamics, 289–306. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-734-5_18.
Der volle Inhalt der QuelleWani, Mohmmad Younus, und Manzoor Ahmad Malik. „Anticancer Metal Complexes“. In Gold and its Complexes in Anticancer Chemotherapy, 35–39. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6314-4_4.
Der volle Inhalt der QuelleKris, Mark G., Fausto Roila, Pieter H. M. De Mulder und Michel Marty. „Delayed Emesis Following Anticancer Chemotherapy“. In Perugia Consensus Conference on Antiemetic Therapy, 45–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72137-3_4.
Der volle Inhalt der QuelleWani, Mohmmad Younus, und Manzoor Ahmad Malik. „Non-platinum Anticancer Agents“. In Gold and its Complexes in Anticancer Chemotherapy, 51–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6314-4_6.
Der volle Inhalt der QuelleWani, Mohmmad Younus, und Manzoor Ahmad Malik. „Platinum-Based Anticancer Agents“. In Gold and its Complexes in Anticancer Chemotherapy, 41–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6314-4_5.
Der volle Inhalt der Quellevan der Hoop, Roland Gerritsen, Lisa M. DeAngelis und Jerome B. Posner. „Neurotoxicity of Combined Radiation and Chemotherapy“. In Neurological Adverse Reactions to Anticancer Drugs, 45–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76142-3_4.
Der volle Inhalt der QuelleBrown, J. Martin, und Bradly G. Wouters. „Does Apoptosis Contribute to Tumor Cell Sensitivity to Anticancer Agents?“ In Apoptosis and Cancer Chemotherapy, 1–19. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-59259-720-8_1.
Der volle Inhalt der QuelleHaefner, Burkhard. „Targeting NF-κB in Anticancer Adjunctive Chemotherapy“. In The Link Between Inflammation and Cancer, 219–45. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/0-387-26283-0_10.
Der volle Inhalt der QuelleWani, Mohmmad Younus, und Manzoor Ahmad Malik. „Mechanisms of Action of Anticancer Gold Complexes“. In Gold and its Complexes in Anticancer Chemotherapy, 159–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6314-4_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Anticancer chemotherapy"
Sundriyal, Deepak, Parmod Kumar, Yeswanth Gogisetti und Amit Sehrawat. „Weekly Etoposide and Platinum in Small-Cell Lung Cancer: Hope and Scope for Fragile Patients“. In Annual Conference of Indian Society of Medical and Paediatric Oncology (ISMPO). Thieme Medical and Scientific Publishers Pvt. Ltd., 2021. http://dx.doi.org/10.1055/s-0041-1735372.
Der volle Inhalt der QuelleSalehi, Hamideh, Siham Al-Arag, Elodie Middendorp, Csilla Gergley und Frederic Cuisinier. „Stem cells as anticancer drug carrier to reduce the chemotherapy side effect“. In SPIE BiOS, herausgegeben von Daniel L. Farkas, Dan V. Nicolau und Robert C. Leif. SPIE, 2017. http://dx.doi.org/10.1117/12.2251994.
Der volle Inhalt der QuelleSukkurwala, Abdul Qader, Mickaël Michaud, Isabelle Martins und Guido Kroemer. „Abstract 2262: Contribution of autophagy in anticancer immune response induced by chemotherapy“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2262.
Der volle Inhalt der QuelleChentoufi, M. Alami, M. Benabbes, S. Bennis und B. Meddah. „5PSQ-072 Tolerance profile of platinum salts in anticancer chemotherapy: a prospective study“. In Abstract Book, 23rd EAHP Congress, 21st–23rd March 2018, Gothenburg, Sweden. British Medical Journal Publishing Group, 2018. http://dx.doi.org/10.1136/ejhpharm-2018-eahpconf.426.
Der volle Inhalt der QuelleNagasaki, Yukio, Yuki Ozaki und Toru Yoshitomi. „Abstract 2900: Redox nanoparticle enhances effect of anticancer chemotherapy and suppresses cardio-toxicity“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2900.
Der volle Inhalt der QuelleTeo, Ka Yaw, und Bumsoo Han. „Freezing-Assisted Intracellular Drug Delivery to Multi-Drug Resistant Cancer Cells“. In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192373.
Der volle Inhalt der QuelleHernandes, Camila, Bruna da Silva, Maria de Fatima Guarrido Klingbeil, Monica Beatriz Mathor, Ana Maria Soares Pereira und Patricia Severino. „Abstract 5456: Avoiding chemotherapy resistance in squamous cell carcinomas: anticancer activities of terpenoids and their impact on the regulation of microRNAs“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5456.
Der volle Inhalt der QuelleCowell, Jessica, Susan J. Zimmerman, Mathieu Marrela, Ping Jiang, Peter J. Houghton, Michael J. LaBarre, Daniel C. Maneval, Curtis B. Thompson und Xiaoming Li. „Abstract 2463: PEGPH20 increases the anticancer activity of standard chemotherapy combinations, vincristine (VIN) and D actinomycin (DACT), in a Wilms’ xenograft model“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2463.
Der volle Inhalt der QuelleSu, Xiulan, Chao Dong, Liya Su, Jialing Zhang, Xuemei Wang, Xia Bai, Hongwei Cui und Zhong Chen. „Abstract 2056: Anticancer bioactive peptide potentiates cisplatin chemotherapy efficacy to improve the quality of life in xenografted nude mice bearing human gastric cancer.“ In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2056.
Der volle Inhalt der QuelleGrouix, Brigitte, Lilianne Geerts, Kathy Hince, Nathalie Julien, Marie-Eve Fafard, Liette Gervais, François Sarra-Bournet et al. „Abstract 3534: PBI-1402, a first-in-class erythropoiesis regulating agent, possesses differentiation properties and demonstrates synergistic anticancer activity in combination with chemotherapy“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3534.
Der volle Inhalt der Quelle