Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Anti-Stokes photoluminescence.

Zeitschriftenartikel zum Thema „Anti-Stokes photoluminescence“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Anti-Stokes photoluminescence" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Cao, Weitao, Weimin Du, Fuhai Su und Guohua Li. „Anti-Stokes photoluminescence in ZnO microcrystal“. Applied Physics Letters 89, Nr. 3 (17.07.2006): 031902. http://dx.doi.org/10.1063/1.2222257.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dantas, Noelio Oliveira, Fanyao Qu, R. S. Silva und Paulo César Morais. „Anti-Stokes Photoluminescence in Nanocrystal Quantum Dots“. Journal of Physical Chemistry B 106, Nr. 30 (August 2002): 7453–57. http://dx.doi.org/10.1021/jp0208743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pierret, Aurélie, Hans Tornatzky und Janina Maultzsch. „Anti‐Stokes Photoluminescence of Monolayer WS 2“. physica status solidi (b) 256, Nr. 12 (09.10.2019): 1900419. http://dx.doi.org/10.1002/pssb.201900419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Heimbrodt, Wolfram, Michael Happ und Fritz Henneberger. „Giant anti-Stokes photoluminescence from semimagnetic heterostructures“. Physical Review B 60, Nr. 24 (15.12.1999): R16326—R16329. http://dx.doi.org/10.1103/physrevb.60.r16326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Moadhen, A., H. Elhouichet und M. Oueslati. „Stokes and anti-Stokes photoluminescence of Rhodamine B in porous silicon“. Materials Science and Engineering: C 21, Nr. 1-2 (September 2002): 297–301. http://dx.doi.org/10.1016/s0928-4931(02)00084-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Poles, Ehud, Donald C. Selmarten, Olga I. Mićić und Arthur J. Nozik. „Anti-Stokes photoluminescence in colloidal semiconductor quantum dots“. Applied Physics Letters 75, Nr. 7 (16.08.1999): 971–73. http://dx.doi.org/10.1063/1.124570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Goto, T., G. Fujimoto und T. Yao. „Ultraviolet anti-Stokes photoluminescence in GaN single crystals“. Journal of Physics: Condensed Matter 18, Nr. 11 (02.03.2006): 3141–49. http://dx.doi.org/10.1088/0953-8984/18/11/019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rakovich, Yu P., S. A. Filonovich, M. J. M. Gomes, J. F. Donegan, D. V. Talapin, A. L. Rogach und A. Eychm�ller. „Anti-Stokes Photoluminescence in II-VI Colloidal Nanocrystals“. physica status solidi (b) 229, Nr. 1 (Januar 2002): 449–52. http://dx.doi.org/10.1002/1521-3951(200201)229:1<449::aid-pssb449>3.0.co;2-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fujiwara, K., A. Satake, N. Takata, U. Jahn, E. Luna und H. T. Grahn. „Anti-Stokes and Stokes photoluminescence in non-uniform GaAs-based quantum wells“. Physica E: Low-dimensional Systems and Nanostructures 42, Nr. 10 (September 2010): 2658–60. http://dx.doi.org/10.1016/j.physe.2010.02.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gruzintsev, A. N. „Two-photon excitation of anti-stokes photoluminescence in Y1.80Er0.10Yb0.10O2S“. Inorganic Materials 50, Nr. 8 (18.07.2014): 821–25. http://dx.doi.org/10.1134/s0020168514080081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yamamoto, Aishi, Tetsuya Sasao, Takenari Goto, Kenta Arai, Hyun-Yong Lee, Hisao Makino und Takafumi Yao. „Anti-Stokes photoluminescence in CdSe self-assembled quantum dots“. physica status solidi (c), Nr. 4 (Juli 2003): 1246–49. http://dx.doi.org/10.1002/pssc.200303059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Valakh, M. Ya, N. V. Vuychik, V. V. Strelchuk, S. V. Sorokin, T. V. Shubina, S. V. Ivanov und P. S. Kop’ev. „Low-temperature anti-Stokes photoluminescence in CdSe/ZnSe nanostructures“. Semiconductors 37, Nr. 6 (Juni 2003): 699–704. http://dx.doi.org/10.1134/1.1582538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Satake, Akihiro, Yasuaki Masumoto, Takao Miyajima, Tsunenori Asatsuma und Tomonori Hino. „Ultraviolet anti-Stokes photoluminescence inInxGa1−xN/GaNquantum-well structures“. Physical Review B 61, Nr. 19 (15.05.2000): 12654–57. http://dx.doi.org/10.1103/physrevb.61.12654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Jancik Prochazkova, Anna, Felix Mayr, Katarina Gugujonovic, Bekele Hailegnaw, Jozef Krajcovic, Yolanda Salinas, Oliver Brüggemann, Niyazi Serdar Sariciftci und Markus C. Scharber. „Anti-Stokes photoluminescence study on a methylammonium lead bromide nanoparticle film“. Nanoscale 12, Nr. 31 (2020): 16556–61. http://dx.doi.org/10.1039/d0nr04545d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Diener, J., D. Kovalev, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al L. Efros und M. Rosen. „Strong low-temperature anti-Stokes photoluminescence from coupled silicon nanocrystals“. Optical Materials 17, Nr. 1-2 (Juni 2001): 135–39. http://dx.doi.org/10.1016/s0925-3467(01)00036-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jollans, Thomas, Martín Caldarola, Yonatan Sivan und Michel Orrit. „Effective Electron Temperature Measurement Using Time-Resolved Anti-Stokes Photoluminescence“. Journal of Physical Chemistry A 124, Nr. 34 (28.07.2020): 6968–76. http://dx.doi.org/10.1021/acs.jpca.0c06671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Valakh, M. Ya, N. O. Korsunska, Yu G. Sadofyev, V. V. Strelchuk, G. N. Semenova, L. V. Borkovska, V. V. Artamonov und M. V. Vuychik. „Anti-Stokes photoluminescence and structural defects in CdSe/ZnSe nanostructures“. Materials Science and Engineering: B 101, Nr. 1-3 (August 2003): 255–58. http://dx.doi.org/10.1016/s0921-5107(02)00674-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kammerer, C., G. Cassabois, C. Voisin, C. Delalande, Ph Roussignol und J. M. G�rard. „Anti-Stokes Photoluminescence in Self-Assembled InAs/GaAs Quantum Dots“. physica status solidi (a) 190, Nr. 2 (April 2002): 505–9. http://dx.doi.org/10.1002/1521-396x(200204)190:2<505::aid-pssa505>3.0.co;2-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Fujii, Katsushi, Takenari Goto und Takafumi Yao. „Properties of ultraviolet anti-Stokes photoluminescence in ZnO single crystals“. physica status solidi (a) 209, Nr. 4 (03.02.2012): 761–65. http://dx.doi.org/10.1002/pssa.201127551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Cong, Chunxiao, Jingzhi Shang, Lin Niu, Lishu Wu, Yu Chen, Chenji Zou, Shun Feng et al. „Anti-Stokes Photoluminescence of van der Waals Layered Semiconductor PbI2“. Advanced Optical Materials 5, Nr. 21 (01.09.2017): 1700609. http://dx.doi.org/10.1002/adom.201700609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Halyan, V. V., A. H. Kevshin, G. Ye Davydyuk und N. V. Shevchuk. „Mechanism of anti-stokes photoluminescence in Ag0.05Ga0.05Ge0.95S2-Er2S3 glassy alloys“. Glass Physics and Chemistry 39, Nr. 1 (Januar 2013): 52–56. http://dx.doi.org/10.1134/s1087659613010069.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Wang, Chunxia, Qi Li und Guiguang Xiong. „Anti-Stokes photoluminescence in TiO2nano-particle films at room temperature“. Journal of Materials Science 39, Nr. 16/17 (August 2004): 5581–82. http://dx.doi.org/10.1023/b:jmsc.0000039293.67074.56.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Machida, S., T. Tadakuma, A. Satake, K. Fujiwara, J. R. Folkenberg und J. M. Hvam. „Stokes and anti-Stokes photoluminescence towards five different Inx(Al0.17Ga0.83)1−xAs∕Al0.17Ga0.83As quantum wells“. Journal of Applied Physics 98, Nr. 8 (15.10.2005): 083527. http://dx.doi.org/10.1063/1.2121928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Xiong, Yuda, Chao Liu, Jing Wang, Jianjun Han und Xiujian Zhao. „Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses“. Optics Express 25, Nr. 6 (15.03.2017): 6874. http://dx.doi.org/10.1364/oe.25.006874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Szalkowski, Marcin, Karolina Sulowska, Martin Jönsson-Niedziółka, Kamil Wiwatowski, Joanna Niedziółka-Jönsson, Sebastian Maćkowski und Dawid Piątkowski. „Photochemical Printing of Plasmonically Active Silver Nanostructures“. International Journal of Molecular Sciences 21, Nr. 6 (16.03.2020): 2006. http://dx.doi.org/10.3390/ijms21062006.

Der volle Inhalt der Quelle
Annotation:
In this paper, we demonstrate plasmonic substrates prepared on demand, using a straightforward technique, based on laser-induced photochemical reduction of silver compounds on a glass substrate. Importantly, the presented technique does not impose any restrictions regarding the shape and length of the metallic pattern. Plasmonic interactions have been probed using both Stokes and anti-Stokes types of emitters that served as photoluminescence probes. For both cases, we observed a pronounced increase of the photoluminescence intensity for emitters deposited on silver patterns. By studying the absorption and emission dynamics, we identified the mechanisms responsible for emission enhancement and the position of the plasmonic resonance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Sun, Guan, Ruolin Chen, Yujie J. Ding und Jacob B. Khurgin. „Upconversion Due to Optical-Phonon-Assisted Anti-Stokes Photoluminescence in Bulk GaN“. ACS Photonics 2, Nr. 5 (07.05.2015): 628–32. http://dx.doi.org/10.1021/acsphotonics.5b00015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wang Xin, Shan Gui-Ye, An Li-Min, Chao Ke-Fu, Zeng Qing-Hui, Chen Bao-Jiu und Kong Xiang-Gui. „The study of anti-Stokes photoluminescence properties in the YZr2OZr3:Er3+ nanocrystals“. Acta Physica Sinica 53, Nr. 6 (2004): 1972. http://dx.doi.org/10.7498/aps.53.1972.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Roman, Benjamin J., und Matthew T. Sheldon. „Six-fold plasmonic enhancement of thermal scavenging via CsPbBr3 anti-Stokes photoluminescence“. Nanophotonics 8, Nr. 4 (31.01.2019): 599–605. http://dx.doi.org/10.1515/nanoph-2018-0196.

Der volle Inhalt der Quelle
Annotation:
AbstractOne-photon up-conversion, also called anti-Stokes photoluminescence (ASPL), is the process whereby photoexcited carriers scavenge thermal energy and are promoted into a higher energy excited state before emitting a photon of greater energy than initially absorbed. Here, we examine how ASPL from CsPbBr3 nanoparticles is modified by coupling with plasmonically active gold nanoparticles deposited on a substrate. Two coupling regimes are examined using confocal fluorescence microscopy: three to four Au nanoparticles per diffraction limited region and monolayer Au nanoparticle coverage of the substrate. In both regimes, CsPbBr3 ASPL is blue-shifted relative to CsPbBr3 deposited on a bare substrate, corresponding to an increase in the thermal energy scavenged per emitted photon. However, with monolayer Au nanoparticle coverage, ASPL is enhanced relative to the conventional Stokes-shifted PL. Together, these phenomena result in a 6.7-fold increase in the amount of thermal energy extracted from the system during optical absorption and reemission.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kita, Takashi, Taneo Nishino, C. Geng, F. Scholz und H. Schweizer. „Dynamic process of anti-Stokes photoluminescence at a long-range-orderedGa0.5In0.5P/GaAsheterointerface“. Physical Review B 59, Nr. 23 (15.06.1999): 15358–62. http://dx.doi.org/10.1103/physrevb.59.15358.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Schrottke, L., H. T. Grahn und K. Fujiwara. „Enhanced anti-Stokes photoluminescence in aGaAs/Al0.17Ga0.83Assingle quantum well with growth islands“. Physical Review B 56, Nr. 24 (15.12.1997): R15553—R15556. http://dx.doi.org/10.1103/physrevb.56.r15553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Valakh, M. Ya. „Deep-level defects in CdSe/ZnSe QDs and giant anti-Stokes photoluminescence“. Semiconductor Physics, Quantum Electronics and Optoelectronics 5, Nr. 3 (10.12.2002): 254–57. http://dx.doi.org/10.15407/spqeo5.03.254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Laguta, Oleksii, Hicham El Hamzaoui, Mohamed Bouazaoui, Vladimir B. Arion und Igor Razdobreev. „Anti-Stokes photoluminescence in Ga/Bi co-doped sol-gel silica glass“. Optics Letters 40, Nr. 7 (31.03.2015): 1591. http://dx.doi.org/10.1364/ol.40.001591.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Sitnikov, D. S., A. A. Yurkevich, M. S. Kotelev, M. Ziangirova, O. V. Chefonov, I. V. Ilina, V. A. Vinokurov et al. „Ultrashort laser pulse-induced anti-Stokes photoluminescence of hot electrons in gold nanorods“. Laser Physics Letters 11, Nr. 7 (28.05.2014): 075902. http://dx.doi.org/10.1088/1612-2011/11/7/075902.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kita, T., T. Nishino, C. Geng, F. Scholz und H. Schweizer. „Time-resolved observation of anti-Stokes photoluminescence at ordered Ga0.5In0.5P and GaAs interfaces“. Journal of Luminescence 87-89 (Mai 2000): 269–71. http://dx.doi.org/10.1016/s0022-2313(99)00311-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Xu, S. J., Q. Li, J. R. Dong und S. J. Chua. „Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP2/GaAs interface“. Applied Physics Letters 84, Nr. 13 (29.03.2004): 2280–82. http://dx.doi.org/10.1063/1.1691496.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Vlasov, I. I., V. G. Ralchenko und V. I. Konov. „UV and Anti-Stokes Photoluminescence of 3H Centre in Electron-Irradiated CVD Diamond“. physica status solidi (a) 186, Nr. 2 (August 2001): 221–26. http://dx.doi.org/10.1002/1521-396x(200108)186:2<221::aid-pssa221>3.0.co;2-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Tran, Toan Trong, Blake Regan, Evgeny A. Ekimov, Zhao Mu, Yu Zhou, Wei-bo Gao, Prineha Narang et al. „Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry“. Science Advances 5, Nr. 5 (Mai 2019): eaav9180. http://dx.doi.org/10.1126/sciadv.aav9180.

Der volle Inhalt der Quelle
Annotation:
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light-emitting diodes, and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescence properties are usually studied under Stokes excitation, in which the emitted photons are at a lower energy than the excitation ones. In this work, we explore the opposite anti-Stokes process, where excitation is performed with lower-energy photons. We report that the process is sufficiently efficient to excite even a single quantum system—namely, the germanium-vacancy center in diamond. Consequently, we leverage the temperature-dependent, phonon-assisted mechanism to realize an all-optical nanoscale thermometry scheme that outperforms any homologous optical method used to date. Our results frame a promising approach for exploring fundamental light-matter interactions in isolated quantum systems and harness it toward the realization of practical nanoscale thermometry and sensing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Kuningas, Katri, Terhi Rantanen, Ulla Karhunen, Timo Lövgren und Tero Soukka. „Simultaneous Use of Time-Resolved Fluorescence and Anti-Stokes Photoluminescence in a Bioaffinity Assay“. Analytical Chemistry 77, Nr. 9 (Mai 2005): 2826–34. http://dx.doi.org/10.1021/ac048186y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Chine, Z., B. Piriou, M. Oueslati, T. Boufaden und B. El Jani. „Anti-Stokes photoluminescence of yellow band in GaN: evidence of two-photon excitation process“. Journal of Luminescence 82, Nr. 1 (Juli 1999): 81–84. http://dx.doi.org/10.1016/s0022-2313(99)00014-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Tripathy, Suvranta K., Guibao Xu, Xiaodong Mu, Yujie J. Ding, Muhammad Jamil, Ronald A. Arif, Nelson Tansu und Jacob B. Khurgin. „Phonon-assisted ultraviolet anti-Stokes photoluminescence from GaN film grown on Si (111) substrate“. Applied Physics Letters 93, Nr. 20 (17.11.2008): 201107. http://dx.doi.org/10.1063/1.3030883.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Carattino, Aquiles, Veer Keizer und Michel Orrit. „Background-Suppression in the Detection of Gold Nanoparticles in Cells through Anti-Stokes Photoluminescence“. Biophysical Journal 110, Nr. 3 (Februar 2016): 486a. http://dx.doi.org/10.1016/j.bpj.2015.11.2598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Хайдуков, Е. В., К. Н. Болдырев, К. В. Хайдуков, И. В. Крылов, И. М. Ашарчук, А. Г. Савельев, В. В. Рочева, Д. Н. Каримов, А. В. Нечаев und А. В. Звягин. „Отложенная регистрация фотолюминесценции нанофосфоров как платформа для оптического биоимиджинга-=SUP=-*-=/SUP=-“. Журнал технической физики 126, Nr. 1 (2019): 90. http://dx.doi.org/10.21883/os.2019.01.47061.262-18.

Der volle Inhalt der Quelle
Annotation:
AbstractDetection systems with deferred registration of luminescence signals are promising for performing complex tasks of imaging of biological objects due to their simplicity and low cost. In the present work, β‑NaYF_4:Tm^3+Yb^3+/NaYF_4 nanocrystals with anti-Stokes photoluminescence have been used in deferred registration systems. It has been shown that there is a significant time delay between the exciting laser pulse and luminescence signal, which makes it possible to use this class of nanoparticles in the creation of wide-field imaging systems with deferred registration. The possibility of using nanoparticles for detecting a photoluminescence signal in the second transparency window of biotissue has been demonstrated. This system can be based on the resonance excitation and detection of the photoluminescence signal of Yb^3 + ions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Deng, Fan, Megan S. Lazorski und Felix N. Castellano. „Photon upconversion sensitized by a Ru(II)-pyrenyl chromophore“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, Nr. 2044 (28.06.2015): 20140322. http://dx.doi.org/10.1098/rsta.2014.0322.

Der volle Inhalt der Quelle
Annotation:
The near-visible-to-blue singlet fluorescence of anthracene sensitized by a ruthenium chromophore with a long-lived triplet-excited state, [Ru(5-pyrenyl-1,10-phenanthroline) 3 ](PF 6 ) 2 , in acetonitrile was investigated. Low intensity non-coherent green light was used to selectively excite the sensitizer in the presence of micromolar concentrations of anthracene generating anti-Stokes, singlet fluorescence in the latter, even with incident power densities below 500 μW cm −2 . The resultant data are consistent with photon upconversion proceeding from sensitized triplet–triplet annihilation (TTA) of the anthracene acceptor molecules, confirmed through transient absorption spectroscopy as well as static and dynamic photoluminescence experiments. Additionally, quadratic-to-linear incident power regimes for the upconversion process were identified for this composition under monochromatic 488 nm excitation, consistent with a sensitized TTA mechanism ultimately producing the anti-Stokes emission characteristic of anthracene singlet fluorescence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Machida, S., T. Tadakuma und K. Fujiwara. „Anti-Stokes photoluminescence between Inx(Al0.17Ga0.83)1−xAs/Al0.17Ga0.83As quantum wells with different x values“. Physica E: Low-dimensional Systems and Nanostructures 33, Nr. 1 (Juni 2006): 196–200. http://dx.doi.org/10.1016/j.physe.2006.02.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hohng, S. C., und D. S. Kim. „Two-color picosecond experiments on anti-Stokes photoluminescence in GaAs/AlGaAs asymmetric double quantum wells“. Applied Physics Letters 75, Nr. 23 (06.12.1999): 3620–22. http://dx.doi.org/10.1063/1.125407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ignatiev, Ivan V., Igor E. Kozin, Hong-Wen Ren, Shigeo Sugou und Yasuaki Masumoto. „Anti-Stokes photoluminescence of InP self-assembled quantum dots in the presence of electric current“. Physical Review B 60, Nr. 20 (15.11.1999): R14001—R14004. http://dx.doi.org/10.1103/physrevb.60.r14001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Junnarkar, M. R., und E. Yamaguchi. „Anti-Stokes photoluminescence from Si modulation doped QW and Si double delta doped AlxGa1−xAs“. Solid-State Electronics 40, Nr. 1-8 (Januar 1996): 665–71. http://dx.doi.org/10.1016/0038-1101(95)00383-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ding, Y. J., und J. B. Khurgin. „From anti-Stokes photoluminescence to resonant Raman scattering in GaN single crystals and GaN-based heterostructures“. Laser & Photonics Reviews 6, Nr. 5 (07.02.2012): 660–77. http://dx.doi.org/10.1002/lpor.201000028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Gruzintsev, A. N., und D. N. Karimov. „Two-photon excitation of the anti-Stokes photoluminescence of Ca1–x Er x F2 + x crystals“. Physics of the Solid State 59, Nr. 1 (Januar 2017): 120–25. http://dx.doi.org/10.1134/s1063783417010103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zhang, Wei, Jing Wang, Chao Liu und Jianjun Han. „Photodarkening and anti‐Stokes photoluminescence from PbSe and Sr 2+ ‐doped PbSe quantum dots in silicate glasses“. Journal of the American Ceramic Society 102, Nr. 6 (19.11.2018): 3368–77. http://dx.doi.org/10.1111/jace.16185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie