Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ansys Steady State Thermal“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ansys Steady State Thermal" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ansys Steady State Thermal"
Peng, Ying. „Research of Thermal Analysis Collaboratively Using ANSYS Workbench and SolidWorks Simulation“. Applied Mechanics and Materials 127 (Oktober 2011): 262–66. http://dx.doi.org/10.4028/www.scientific.net/amm.127.262.
Der volle Inhalt der QuelleChen, Kai Kang, Fu Ping Li und Yong Sheng Zhao. „FEA of Thermal Characteristic of Motorized Spindle Based on ANSYS Workbench“. Applied Mechanics and Materials 437 (Oktober 2013): 36–41. http://dx.doi.org/10.4028/www.scientific.net/amm.437.36.
Der volle Inhalt der QuelleShi, Yan Yan, Lin Li, Xiang Feng Kong, Jin Hua Li und Hong Sun. „Study on the Steady State Thermal Analysis Method of Accessory Transmission System“. Applied Mechanics and Materials 198-199 (September 2012): 162–66. http://dx.doi.org/10.4028/www.scientific.net/amm.198-199.162.
Der volle Inhalt der QuelleYuan, Hui Qun, und Chol Nam Ri. „Modal Analysis of Gear Considering Temperature Based on ANSYS“. Advanced Materials Research 482-484 (Februar 2012): 1209–12. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.1209.
Der volle Inhalt der QuelleMuhi, Mohsin Obaid. „Effect of Sample Length on the Time Needed to Reach the Steady State Case“. Journal of University of Babylon for Engineering Sciences 27, Nr. 2 (28.05.2019): 171–82. http://dx.doi.org/10.29196/jubes.v27i2.2306.
Der volle Inhalt der QuelleWang, Jian Xin, und Tong Zhang. „Strength Analysis of Miniature Thermoacoustic Refrigerator Resonance Tube Based on ANSYS“. Advanced Materials Research 926-930 (Mai 2014): 2578–81. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.2578.
Der volle Inhalt der QuelleGabriel Kristian Tarigan, Ardyanta. „Designing new pot design using Ansys steady state thermal to reach 215 ka pot technology“. IOP Conference Series: Materials Science and Engineering 801 (03.06.2020): 012129. http://dx.doi.org/10.1088/1757-899x/801/1/012129.
Der volle Inhalt der QuelleLu, Chao. „Analysis on Thermal Fatigue Fracture on Engine Exhaust Manifold Based on ANSYS“. Advanced Materials Research 217-218 (März 2011): 1531–35. http://dx.doi.org/10.4028/www.scientific.net/amr.217-218.1531.
Der volle Inhalt der QuelleNie, Xue Jun. „Spindle Thermal Analysis of CNC Milling Machine“. Advanced Materials Research 765-767 (September 2013): 88–91. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.88.
Der volle Inhalt der QuelleLiu, Liang, Zheng Lin Liu, Jun Wang und En Gao Peng. „Coupled Thermal-Structural Analysis of Mechanical Seal“. Advanced Materials Research 479-481 (Februar 2012): 1110–14. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.1110.
Der volle Inhalt der QuelleDissertationen zum Thema "Ansys Steady State Thermal"
Valluru, Srividya. „Steady state thermal stress analyses of two-dimensional and three-dimensional solid oxide fuel cells“. Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3887.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains ix, 138 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 90-94).
Němec, Petr. „Měnič pro BLDC motor“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442792.
Der volle Inhalt der QuelleFerroni, Paolo Ph D. Massachusetts Institute of Technology. „Steady state thermal hydraulic analysis of hydride fueled BWRs“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/41263.
Der volle Inhalt der QuelleThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006.
(cont.) Since the results obtained in the main body of the analysis account only for thermal-hydraulic constraints, an estimate of the power reduction due to the application of neutronic constraints is also performed. This investigation, focused only on the "New Core" cases, is coupled with an increase of the thickness of the gap separating adjacent bundles from 2 to 5 mm. Under these more conservative conditions, the power gain percentages are lower, ranging between 24% and 43% (depending on the discharge burnup considered acceptable) for the upper pressure drop limit, and between 17% and 32% for the lower pressure drop limit.
(cont.) The benefits of the latter approach are evident since the space occupied by the bypass channel for cruciform control rod insertion becomes available for new fuel and a higher power can be achieved. The core power is constrained by applying thermal-hydraulic limits that, if exceeded, may induce failure mechanisms. These limits concern Minimum Critical Power Ratio (MCPR), core pressure drop, fuel average and centerline temperature, cladding outer temperature and flow-induced vibrations. To limit thermal-hydraulic instability phenomena, core power and coolant flow are constrained by fixing their ratio to a constant value. In particular, each BWR/5 core has been analyzed twice, each time with a different pressure drop limit: a lower limit corresponding to the pressure drop of the reference core and an upper limit 50% larger. It has been demonstrated that, in absence of neutronic constraints and with the maximum allowed pressure drop fixed at the upper limit, the implementation of the hydride fuel yields power gain percentages, with respect to oxide cores chosen as reference, of the order of 23% when its implementation is performed following the "Backfit" approach and even higher (50-70%) when greater design freedom is allowed in the core design, i.e. in the "New Core" approach. Should the maximum allowed pressure drop be fixed at the lower limit, the power gain percentage of the "Backfit" approach would decrease to 17%, while that of the "New Core" approach would remain unchanged, i.e. 50-70%.
This thesis contributes to the Hydride Fuel Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in Light Water Reactors (LWRs). Considerable work has already been accomplished on hydride fueled Pressurized Water Reactor (PWR) cores. This thesis extends the techniques used in the PWR analysis to examine the potential power benefits resulting from the implementation of the hydride fuel in Boiling Water Reactors (BWRs). This work is the first step towards the achievement of a complete understanding of the economic implications that may derive from the use of this new fuel in BWR applications. It is a whole core steady-state analysis aimed at comparing the power performance of hydride fueled BWR cores with those of typical oxide-fueled cores, when only thermal-hydraulic constraints are applied. The integration of these results with those deriving from a transient analysis and separate neutronic and fuel performance studies will provide the data required to build a complete economic model, able to identify geometries offering the lowest cost of electricity and thus to provide a fair basis for comparing the performance of hydride and oxide fuels. Core design is accomplished for two types of reactors: one smaller, a BWR/5, which is representative of existing reactors, and one larger, the ESBWR, which represents the future generation of BWRs. For both, the core design is accomplished in two ways: a "Backfit" approach, in which the ex-bundle core structure is identical to that of the two reference oxide cores, and a "New Core" approach, in which the control rods are inserted into the bundles in the form of control fingers and the gap between adjacent bundles is fixed optimistically at 2 mm.
by Paolo Ferroni.
S.M.
Huning, Alexander. „A steady state thermal hydraulic analysis method for prismatic gas reactors“. Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52196.
Der volle Inhalt der QuelleWiser, Travis Sloan. „Steady state heat transfer characterization of a liquid metal thermal switch“. Online access for everyone, 2005. http://www.dissertations.wsu.edu/Thesis/Summer2005/T%5FWiser%5F062205.pdf.
Der volle Inhalt der QuelleHioe, Yunior. „Mold thermal design and quasi steady state cycle time analysis in injection molding“. Connect to resource, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141840509.
Der volle Inhalt der QuelleMarshallsay, P. G. „A methodology for modelling the steady-state thermal performance of air conditioning systems /“. Title page, contents and abstract only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phm3692.pdf.
Der volle Inhalt der QuelleMadrid, Lozano Francesc. „Thermal Conductivity and Specific Heat Measurements for Power Electronics Packaging Materials. Effective Thermal Conductivity Steady State and Transient Thermal Parameter Identification Methods“. Doctoral thesis, Universitat Autònoma de Barcelona, 2005. http://hdl.handle.net/10803/5348.
Der volle Inhalt der QuelleDerakhshan, Jamal Jon. „Innovations Involving Balanced Steady State Free Precession MRI“. Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1247256364.
Der volle Inhalt der QuelleTitle from PDF (viewed on 19 August 2009) Department of Biomedical Engineering Includes abstract Includes bibliographical references Available online via the OhioLINK ETD Center
Lindén, Ronja, und Henrik Samuelsson. „Thermal analysis and design improvement of light module fixture“. Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Maskinteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-30485.
Der volle Inhalt der QuelleBücher zum Thema "Ansys Steady State Thermal"
Freed, Alan David. Steady-state and transient zener parameters in viscoplasticity: Drag strength versus yield strength. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenChandra, G. Sachin. Measurement of thermal conductivity of liquids at temperatures and pressures along the saturation line using a steady state a.c. hot wire technique. Birmingham: University of Birmingham, 1990.
Den vollen Inhalt der Quelle findenP, Walker K., und United States. National Aeronautics and Space Administration., Hrsg. Steady-state and transient zener parameters in viscoplasticity: Drag strength versus yield strength. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenIntegrated Advanced Microwave Sounding Unit-A (AMSU-A), engineering test report, AMSU EOS A1 thermal balance test correlation: Contract no. NAS 5-32314. [Washington, DC: National Aeronautics and Space Administration, 1998.
Den vollen Inhalt der Quelle findenThermal-structural finite element analysis using linear flux formulation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenPramote, Dechaumphai, Wieting A. R und Langley Research Center, Hrsg. Thermal-structural finite element analysis using linear flux formulation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenPramote, Dechaumphai, Wieting A. R und Langley Research Center, Hrsg. Thermal-structural finite element analysis using linear flux formulation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenJ, Petrus G., Krauss T. M und United States. National Aeronautics and Space Administration., Hrsg. Modeling of thermal barrier coatings: Final report. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenA, Berna Gary, und U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Systems Technology., Hrsg. FRAPCON-3: A computer code for the calculation of steady state thermal-mechanical behavior of oxide fuel rods for high burnup. Wasington, DC: The Commission, 1997.
Den vollen Inhalt der Quelle findenTechnical Committee ISO/TC 38, Textiles. und International Organization for Standardization, Hrsg. Textiles: Physiological effects : measurement of thermal and water-vapour resistance under steady-state conditions : sweating guarded-hotplate test = Textiles : effets physiologique : mesurage de la résistance thermique et de la résistance à la vapour d'eau en régime stationnaire : essai de la plaque chaude gardée transpirante. Genève, Switzerland: International Organization for Standardization, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ansys Steady State Thermal"
An, Chen, Menglan Duan, Segen F. Estefen und Jian Su. „Steady-State Thermal Analysis“. In Structural and Thermal Analyses of Deepwater Pipes, 183–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53540-7_13.
Der volle Inhalt der QuelleKoniorczyk, Piotr, und Janusz Zmywaczyk. „Two-Dimensional, Steady-State Conduction“. In Encyclopedia of Thermal Stresses, 6260–77. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_418.
Der volle Inhalt der QuelleTrojan, Marcin. „One-Dimensional, Steady-State Heat Conduction“. In Encyclopedia of Thermal Stresses, 3483–98. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_401.
Der volle Inhalt der QuelleBrock, Louis, und Haralambos Georgiadis. „Rapid Sliding Contact: Elastodynamic Steady State“. In Encyclopedia of Thermal Stresses, 4102–8. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_689.
Der volle Inhalt der QuelleKoniorczyk, Piotr, und Janusz Zmywaczyk. „Two-Dimensional, Steady-State Conduction: Tables“. In Encyclopedia of Thermal Stresses, 6277. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_2003.
Der volle Inhalt der QuelleFrąckowiak, Andrzej, und Michał Ciałkowski. „Green’s Functions in Steady-State Heat Conduction“. In Encyclopedia of Thermal Stresses, 2053–61. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_387.
Der volle Inhalt der QuelleKeer, Leon M., und Noah Weiss. „Steady State Heat Flow into Concentrated Contact“. In Encyclopedia of Thermal Stresses, 4559–64. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_138.
Der volle Inhalt der QuelleKeer, Leon M., und Noah Weiss. „Steady State Heat Flow and Isolated Crack“. In Encyclopedia of Thermal Stresses, 4553–59. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_153.
Der volle Inhalt der QuelleAn, Chen, Menglan Duan, Segen F. Estefen und Jian Su. „Steady-State Analysis of Heavy Oil Transportation“. In Structural and Thermal Analyses of Deepwater Pipes, 191–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53540-7_14.
Der volle Inhalt der QuelleMahadevan-Jansen, Anita, und Steven C. Gebhart. „Steady State Fluorescence Spectroscopy for Medical Diagnosis“. In Optical-Thermal Response of Laser-Irradiated Tissue, 761–98. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8831-4_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ansys Steady State Thermal"
Mueller, Andre, Christian Buennagel, Shafiul Monir, Andrew Sharp, Yuriy Vagapov und Alecksey Anuchin. „Numerical Design and Optimisation of a Novel Heatsink using ANSYS Steady-State Thermal Analysis“. In 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED). IEEE, 2020. http://dx.doi.org/10.1109/iwed48848.2020.9069568.
Der volle Inhalt der QuelleBatchu, Suresh, und S. Kishore Kumar. „Steady State Thermal Analysis of an Afterburner Liner“. In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3615.
Der volle Inhalt der QuelleLi, Linsen, Haomin Yuan und Kan Wang. „The Modelling and Coupling Methodology of ANSYS CFX Using Porous Media for PB-AHTR“. In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16687.
Der volle Inhalt der QuelleRajiyah, Harindra, Louis P. Inzinna, Gerald G. Trantina, Robert M. Orenstein und Martin B. Cutrone. „Thermal Shock Analysis and Testing of Simulated Ceramic Components for Gas Turbine Applications“. In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-308.
Der volle Inhalt der QuelleBrilliant, Howard M., und Anil K. Tolpadi. „An Improved Analytical Approach to Steam Turbine Heat Transfer“. In ASME 2004 Power Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/power2004-52002.
Der volle Inhalt der QuelleLück, Hannes, Michael Schäfer und Heinz-Peter Schiffer. „Simulation of Thermal Fluid-Structure Interaction in Blade-Disc Configuration of an Aircraft Turbine Model“. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26316.
Der volle Inhalt der QuelleBuonomo, Bernardo, Furio Cascetta, Alessandra Diana, Oronzio Manca und Sergio Nardini. „Numerical Investigation on Thermal and Fluid Dynamic Analysis of a Solar Chimney in a Building Façade“. In ASME 2019 Heat Transfer Summer Conference collocated with the ASME 2019 13th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ht2019-3612.
Der volle Inhalt der QuelleMcMasters, Robert L., Filippo de Monte, Giampaolo D'Alessandro und James V. Beck. „Verification of ANSYS and Matlab Conduction Results Using Analytical Solutions“. In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-8970.
Der volle Inhalt der QuelleAlfaro-Ayala, J. A., A. Gallegos-Mun˜oz, A. Olivares-Arriaga, A. Zaleta-Aguilar und J. J. Vazquez Martinez. „Thermal-Structural Analysis of the Super-Heater Tubes of a Unit of 158 MW“. In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55124.
Der volle Inhalt der QuelleTalimi, V., Y. S. Muzychka und S. Kocabiyik. „A Numerical Study on Shear Stress and Heat Transfer of Segmented Flow Between Parallel Plates“. In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58237.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ansys Steady State Thermal"
Feldman, E. Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis. Office of Scientific and Technical Information (OSTI), März 2008. http://dx.doi.org/10.2172/929269.
Der volle Inhalt der QuelleYoder, G. L., J. J. Carbajo, D. G. Morris und W. R. Nelson. Update to advanced neutron source steady-state thermal-hydraulic report. Office of Scientific and Technical Information (OSTI), Mai 1996. http://dx.doi.org/10.2172/283708.
Der volle Inhalt der QuelleLicht, J. R., A. Bergeron, B. Dionne, G. Van den Branden, S. Kalcheva, E. Sikik und E. Koonen. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU. Office of Scientific and Technical Information (OSTI), Dezember 2015. http://dx.doi.org/10.2172/1240155.
Der volle Inhalt der QuelleLicht, J. R., A. Bergeron, B. Dionne, G. Van den Branden, S. Kalcheva, E. Sikik und E. Koonen. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1330567.
Der volle Inhalt der QuelleVilim, R. B., und R. N. Hill. The steady-state thermal-hydraulic performance of 3500 MWth metal and oxide fueled LMRs. Office of Scientific and Technical Information (OSTI), März 1989. http://dx.doi.org/10.2172/6114932.
Der volle Inhalt der QuelleMorris, D. G., N. C. Chen, W. R. Nelson und G. L. Yoder. Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor. Office of Scientific and Technical Information (OSTI), Oktober 1996. http://dx.doi.org/10.2172/454005.
Der volle Inhalt der QuelleHayes, S. L. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/140916.
Der volle Inhalt der QuelleWharry, Janelle, und Won Sik Yang. Steady-State Thermal-Hydraulic Analysis and Bowing Reactivity Evaluation Methods Based on Neutron and Gamma Transport Calculations. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1493700.
Der volle Inhalt der QuelleOlson, Arne P., Benoit Dionne, John G. Stevens, S. Kalcheva, G. Van den Branden und E. Koonen. Steady-state thermal-hydraulics feasibility study for the conversion of the BR2 reactor to LEU. Revision 0. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1214238.
Der volle Inhalt der QuelleDunn, Floyd E., Lin-wen Hu und Erik Wilson. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1349053.
Der volle Inhalt der Quelle