Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Anomalous reflection and transmission“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Anomalous reflection and transmission" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Anomalous reflection and transmission"
Jeong, Jeeyoon, Dasom Kim, Hyeong-Ryeol Park, Taehee Kang, Dukhyung Lee, Sunghwan Kim, Young-Mi Bahk und Dai-Sik Kim. „Anomalous extinction in index-matched terahertz nanogaps“. Nanophotonics 7, Nr. 1 (01.01.2018): 347–54. http://dx.doi.org/10.1515/nanoph-2017-0058.
Der volle Inhalt der QuelleChen, Yingying, Qinghua Liang, Haozhe Sun, Xiaochen Zhang, Weikang Dong, Meihua Niu, Yanji Zheng et al. „Kissing-loop nano-kirigami structures with asymmetric transmission and anomalous reflection“. Light: Advanced Manufacturing 5 (2024): 1. http://dx.doi.org/10.37188/lam.2024.042.
Der volle Inhalt der QuelleYu, Guanxia, Yihang Lv, Xiaomeng Zhang und Ruoyu Cao. „Electromagnetic propagation characteristics of one-dimensional photonic crystals with metal layers in quasi-parity-time (PT)-symmetric system“. Zeitschrift für Naturforschung A 75, Nr. 7 (28.07.2020): 665–70. http://dx.doi.org/10.1515/zna-2020-0104.
Der volle Inhalt der QuelleFan, Zihang, Zhaoyun Zong und Fubin Chen. „Accurate P-wave reflection and transmission coefficients for non-welded interface incorporating elasto-plastic deformation“. Annals of Geophysics 66, Nr. 3-4 (06.11.2023): PE322. http://dx.doi.org/10.4401/ag-8909.
Der volle Inhalt der QuelleHatchell, Paul J. „Fault whispers: Transmission distortions on prestack seismic reflection data“. GEOPHYSICS 65, Nr. 2 (März 2000): 377–89. http://dx.doi.org/10.1190/1.1444733.
Der volle Inhalt der QuelleSpall, Michael A., und Joseph Pedlosky. „Reflection and Transmission of Equatorial Rossby Waves*“. Journal of Physical Oceanography 35, Nr. 3 (01.03.2005): 363–73. http://dx.doi.org/10.1175/jpo-2691.1.
Der volle Inhalt der QuelleHe, Mengyun, Yu Huang, Huimin Sun, Yu Fu, Peng Zhang, Chenbo Zhao, Kang L. Wang, Guoqiang Yu und Qing Lin He. „Quantum anomalous Hall interferometer“. Journal of Applied Physics 133, Nr. 8 (28.02.2023): 084401. http://dx.doi.org/10.1063/5.0140086.
Der volle Inhalt der QuelleXU ZHANG-CHENG, GUO CHANG-LIN, ZHAO ZONG-YAN, T.FUKAMACHI und R.NEGISHI. „ANOMALOUS TRANSMISSION OF X-RAYS UNDER ASYMMETRICAL REFLECTION CONDITION NEAR THE ABSORPTION EDGE“. Acta Physica Sinica 47, Nr. 11 (1998): 1818. http://dx.doi.org/10.7498/aps.47.1818.
Der volle Inhalt der QuelleFalsi, Ludovica, Salvatore Macis, Yehonatan Gelkop, Luca Tartara, Eleonora Bonaventura, Paola Di Pietro, Andrea Perucchi et al. „Anomalous Optical Properties of KTN:Li Ferroelectric Supercrystals“. Nanomaterials 13, Nr. 5 (27.02.2023): 899. http://dx.doi.org/10.3390/nano13050899.
Der volle Inhalt der QuellePapathanasiou, T. K., A. B. Movchan und D. Bigoni. „Wave reflection and transmission in multiply stented blood vessels“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, Nr. 2202 (Juni 2017): 20170015. http://dx.doi.org/10.1098/rspa.2017.0015.
Der volle Inhalt der QuelleDissertationen zum Thema "Anomalous reflection and transmission"
Kourchi, Hasna. „Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Der volle Inhalt der QuelleA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Dyer, Benjamin Charles. „Seismic transmission and reflection tomography“. Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47042.
Der volle Inhalt der QuelleBurdick, Scott A. (Scott Anthony). „Teleseismic transmission and reflection tomography“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87516.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
The aim of seismic tomography is to determine a model of Earth properties that best explain observed seismic data. In practice, the limitations placed on our observations and computational capabilities force us to make a number of decisions about the scales and parameterizations of models, the nature of the data considered, and the approximations to wave propagation that connect the two. This thesis will consider three divergent approaches to seismic tomography spanning different representations of Earth structure at different scales, using different parts of the teleseismic wavefield, and solving the inverse problem with different approximations to the wave equation and different optimization methods. In choosing each of these approaches, we address two major decisions that influence the tomographic process: First, what relative value do we place on an less approximate treatment of wave physics versus the ability to incorporate as much information as possible in our inversion? Second, how can we use novel data to better constrain smooth seismic structure in regions that were previously unresolved? The first project presents a global ray-theoretical P-wave model that encompasses millions of traveltime picks. In this inversion, the addition of data from the dense USArray Transportable Array to global catalog data allows us to image the structure of the Eastern United States with unprecedented resolution and make a robust evaluation of the spatial scales of the heterogeneity. The second project develops a finite frequency approach to turning wave transmission tomography using a computationally efficient one-way wave propagation on curvilinear coordinates. The use of overturning coordinate systems allows for the application of wave equation tomography to phases previously unused in other oneway schemes. The final project presents a novel approach to wave-equation teleseismic reflection tomography using free surface multiples. The use of these multiply reflected phases helps to localize heterogeneity in the model to within layers of Earth structure. This project spans the final two chapters and includes the theoretical developments and an inaugural application to SsPmp data from the Hi-CLIMB array in Tibet.
by Scott A. Burdick.
Ph. D. in Geophysics
Chen, Yu. „Spherical wave reflection and transmission“. Thesis, Open University, 1991. http://oro.open.ac.uk/57346/.
Der volle Inhalt der QuelleLee, Seung-Kyu. „Wave reflection, transmission and propagation in structural waveguides“. Thesis, University of Southampton, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430485.
Der volle Inhalt der QuelleBaig, Adam Mirza. „Reflection and transmission problems in vertically inhomogeneous elastic media“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/MQ47005.pdf.
Der volle Inhalt der QuelleWeis, R. Stephen. „Electromagnetic transmission and reflection characteristics of anisotropic multilayered structures“. Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/13546.
Der volle Inhalt der QuelleChen, Jianbing James 1971. „Transmission and reflection properties of layered left-handed materials“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38681.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 179-189).
This thesis is concerned with the reflection and transmission properties of layered left-handed materials (LHM). In particular, the reflection properties of (LHM) slabs are studied for the Goos-Hanchen (GH) lateral shift phenomenon. We demonstrate a unique GH lateral shift phenomenon, which shows that both positive and negative shifts can be achieved using the same LHM slab configuration. This phenomenon is different from previously established cases where the GH lateral shift can be only negative or only positive when different LHM slab configurations are used. We also show that there exist two distinct cases with this unique phenomenon. One case has two regions of incident angles where the GH lateral shift directions are different, while another case has three regions with alternated GH shift directions. A generalized analytical formulation for analyzing the GH lateral shift direction is provided, which reveals that this unique phenomenon is related to the relative amplitudes of the growing and decaying evanescent waves inside the LHM slabs. The energy flux patterns within LHM slabs are further studied to show the influence of the evanescent waves on the GH shift direction change.
(cont.) Furthermore, the transmission property of LHM slabs are studied on the finite slabs' maging capability. First, the development of the numerical simulation tool - the Finite-Difference Time-Domain method (FDTD) - investigates the ability of the method to model a perfect lens made of a slab of homogeneous LHM. It is shown that because of the frequency dispersive nature of the medium and the time discretization, an inherent mismatch in the constitutive parameters exists between the slab and its surrounding medium. This mismatch in the real part of the permittivity and permeability is found to have the same order of magnitude as the losses typically used in numerical simulations. Hence, when the LHM slab is lossless, this mismatch is shown to be the main factor contributing to the image resolution loss of the slab. In addition, finite-size LHM slabs are studied both analytically and numerically since they have practical importance in the actual experiments. The analytical method is based on Huygens' principles using truncated current sheets that cover only the apertures of the slabs. It is shown that the main effects on the images' spectra due to the size of the slabs can be predicted by the proposed analytical method, which can, therefore, be used as a fast alternative to numerical simulations.
(cont.) Furthermore, the property of negative energy streams at the image plane is also investigated. This unique property is found to be due to the interactions between propagating and evanescent waves and can only occur with LHM slabs, of both finite-size and infinite size. The last part of the thesis deals with multi-layered media for the application to antenna isolations. The setup is with two horn antennas located beneath the ground plane with 10 A distance apart. In order to reduce the coupling between antennas, multi-layered media placed on top of the ground plane need to be designed to suppress the fields. After the problem is simplified to the dipole antenna coupling in infinite slabs, the method to evaluate the fields inside layered media is presented. This method obtains the spectral domain Green's function first and then transforms the fields to the spatial domain using the Sommerfeld-type integration. After the method is validated using right-handed materials (RHM) from references, it is extended to include media like LHM as well as p. negative material and : negative material . The validation with these materials are done by comparing the results with CST microwave studio simulations. The first configuration for the antenna isolation design if one layer slab backed by the grounded plane. Two different approaches are used to find the optimum slab parameters for the isolation.
(cont.) One approach is to use Genetic Algorithm (GA) to optimize the slab's constitutive parameters and the thickness for a minimum coupling level. The other approach is to develop an analytic asymptotic expression for the field, and then used the expression to design the slab parameters for the best isolation. We conclude that both approaches yield the same design for the given configuration. The effectiveness of the design is also validated on a grounded finite slab, which is the representation of the actual application. Finally, multi-layered media for the antenna isolation is studied. GA method is applied with an optimization scheme tailed for a five layered structure. We show that GA converges very fast to the solution and the result yields satisfactory isolation between the antennas.
by Jianbing James Chen.
Ph.D.
Cebrecos, Ruiz Alejandro. „Transmission, reflection and absorption in Sonic and Phononic Crystals“. Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/56463.
Der volle Inhalt der Quelle[ES] Los cristales fonónicos son materiales artificiales formados por una disposición periódica de inclusiones en un medio, pudiendo ambos ser de carácter sólido o fluido. Controlando la geometría y el contraste de impedancias entre los materiales constituyentes se pueden controlar las propiedades dispersivas de las ondas. Cuando una onda propagante se encuentra un medio con diferentes propiedades físicas puede ser transmitida y reflejada, en medios sin pérdidas, pero también absorbida, si la disipación es tenida en cuenta. La presente tesis está dedicada al estudio de diferentes efectos presentes en cristales sónicos y fonónicos relacionados con la transmisión, reflexión y absorción de ondas, así como el desarrollo de una técnica para la caracterización de sus propiedades dispersivas, descritas por la estructura de bandas. En primer lugar, se estudia el control de la propagación de ondas en transmisión en sistemas conservativos. Específicamente, nuestro interés se centra en mostrar cómo los cristales sónicos son capaces de modificar la dispersión espacial de las ondas propagantes, dando lugar al control del ensanchamiento de haces de sonido. Haciendo uso de las curvas de dispersión espacial extraídas del análisis de la estructura de bandas, se predice primero la difracción nula y negativa de ondas a frecuencias cercanas al borde de la banda, resultando en la colimación y focalización de haces acústicos en el interior y detrás de un cristal sónico 3D, y posteriormente se demuestra mediante medidas experimentales. La eficiencia de focalización de un cristal sónico 3D está limitada debido a las múltiples reflexiones existentes en el interior del cristal. Para superar esta limitación se consideran estructuras axisimétricas trabajando en el régimen de longitud de onda larga, como lentes de gradiente de índice. En este régimen, las reflexiones internas se reducen fuertemente y, en configuración axisimétrica, la adaptación de simetría con fuentes acústicas radiando haces de sonido incrementa la eficiencia drásticamente. Además, la teoría de homogenización puede ser empleada para modelar la estructura como un medio efectivo con propiedades físicas efectivas, permitiendo el estudio del frente de ondas en términos refractivos. Se mostrará el modelado, diseño y caracterización de un dispositivo de focalización eficiente basado en los conceptos anteriores. Considérese ahora una estructura periódica en la que uno de los parámetros de la red, sea el paso de red o el factor de llenado, cambia gradualmente a lo largo de la dirección de propagación. Los cristales chirp representan este concepto y son empleados aquí para demostrar un mecanismo novedoso de incremento de la intensidad de la onda sonora basado en un fenómeno conocido como reflexión "suave". Este incremento está relacionado con una ralentización progresiva de la onda conforme se propaga a través del material, asociado con la velocidad de grupo de la relación de dispersión local en los planos del cristal. Un modelo basado en la teoría de modos acoplados es propuesto para predecir e interpretar este efecto. Se observan dos fenómenos diferentes al considerar pérdidas en estructuras periódicas. Por un lado, si se considera la propagación de ondas sonoras en un array periódico de capas absorbentes, cuyo frente de ondas es paralelo a los planos del cristal, se produce una reducción anómala en la absorción combinada con un incremento simultáneo de la reflexión y transmisión a las frecuencias de Bragg, de forma contraria a la habitual reducción de la transmisión, característica de sistemas periódicos conservativos a estas frecuencias. En el caso de la misma estructura laminada en la que se cubre uno de sus lados mediante un reflector rígido, la incidencia de ondas sonoras desde un medio homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal, produce un gran incremento de la fuerza de
[CAT] Els cristalls fonònics són materials artificials formats per una disposició d'inclusions en un medi, ambdós poden ser sòlids o fluids. Controlant la geometría i el contrast d'impedàncies dels seus materials constituents, és poden controlar les propietats dispersives de les ondes, permetent una gran varietatde fenòmens fonamentals interessants en el context de la propagació d'ones. Quan una ona propagant troba un medi amb pèrdues amb propietats físiques diferents es pot transmetre i reflectir, però també absorbida si la dissipació es té en compte. Aquests fenòmens fonamentals s'han explicat clàssicament en el context de medis homogenis, però també ha sigut un tema de creixent interés en el context d'estructures periòdiques en els últims anys. Aquesta tesi doctoral tracta de l'estudi de diferents efectes en cristalls fonònics i sònics lligats a la transmissió, reflexió i absorció d'ones, així com del desenvolupament d'una tècnica de caracterització de les propietats dispersives, descrites mitjançant la estructura de bandes. En primer lloc, s'estudia el control de la propagació ondulatori en transmissió en sistemes conservatius. Més específicament, el nostre interés és mostrar com els cristalls sonors poden modificar la dispersió espacial d'ones propagants donant lloc al control de l'amplària per difracció dels feixos sonors. Mitjançant les corbes dispersió espacial obtingudes de l'anàlisi de l'estructura de bandes, es prediu, en primer lloc, la difracció d'ones zero i negativa a freqüències próximes al final de banda. El resultat és la collimació i focalització de feixos sonors dins i darrere de cristalls de so. Després es mostra amb mesures experimentals. L'eficiència de focalització d'un cristall de so 3D està limitada per la gran dispersió d'ones dins del cristall, que és característic del règim difractiu. Per a superar aquesta limitació, estructures axisimètriques que treballen en el règim de llargues longituds d'ona, i es comporten com a lents de gradient d'índex. En aquest règim, la dispersió es redueix enormement i, en una configuració axisimètrica, a causa de l'acoblament de la simetría amb les fonts acústiques que radien feixos sonors, l'eficiència de radiació s'incrementa significativament. D'altra banda, la teoria d'homogeneïtzació es pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de focalització basat en aquests conceptes. Considerem ara una estructura periòdica en la qual un dels seus paràmetres de xarxa, com ara la constant de xarxa o el factor d'ompliment canvia gradualment al llarg de la direcció de propagació. Els cristalls chirped representen aquest concepte i s'utilitzen ací per a demostrar un mecanisme nou d'intensificació d'ones sonores basat en el fenòmen conegut com a reflexió "suau". La intensificació està relacionada amb la alentiment progressiva de l'ona conforme propaga al llarg del material, que està associada amb la velocitat de grup de la relació de dispersió local en els diferents plànols del cristall. Es proposa un model basat en la teoria de modes acoblats per a predir i interpretar este efecte. Dos fenòmens diferents cal destacar quan es tracta d'estructures periòdiques amb dissipació. Per un costat, al considerar la propagació d'ones sonores en el plànol en un array periòdic de capes absorbents, s'observa una disminució anòmala de l'absorció i es combina amb un augment simultani de reflexió i transmissió en les freqüències de Bragg que contrasta amb la usual disminució de transmissió, característica dels sistemes conservatius a eixes freqüències. Per a un medi similar de capes, amb un reflector rígid darrere, les ones fora del pla incidint l'estructura des de un medi homogeni, augmentaran considerablement la interacció. En altres paraules, el retràs temporal de les ones sonores dins del sistema periòdic augmentarà significativament produint un augmen
Cebrecos Ruiz, A. (2015). Transmission, reflection and absorption in Sonic and Phononic Crystals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56463
TESIS
Premiado
Borocin, F. „(Derivation of) reflection/transmission coefficients for fluid-saturated poroelastic sediments“. Thesis, University of Edinburgh, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.641793.
Der volle Inhalt der QuelleBücher zum Thema "Anomalous reflection and transmission"
Lekner, John. Theory of reflection: Of electromagnetic and particle waves. Dordrecht: M. Nijhoff Publishers, 1987.
Den vollen Inhalt der Quelle findenJames, Baker-Jarvis, und National Institute of Standards and Technology (U.S.), Hrsg. Transmission/reflection and short-circuit line methods for measuring permittivity and permeability. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1992.
Den vollen Inhalt der Quelle findenBen, Munk, und Lewis Research Center, Hrsg. The reflection and transmission properties of a triple band dichroic surface: Final technical report. Columbus, Ohio: The Ohio State University, ElectroScience Laboratory, 1990.
Den vollen Inhalt der Quelle findenCenter, NASA Glenn Research, Hrsg. Acoustic reflection and transmission of 2-dimensional rotors and stators, including mode and frequency scattering effects. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenCenter, NASA Glenn Research, Hrsg. Broadband noise of fans-with unsteady coupling theory to account for rotor and stator reflection/transmission effects. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenCenter, NASA Glenn Research, Hrsg. Broadband noise of fans-with unsteady coupling theory to account for rotor and stator reflection/transmission effects. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenCenter, NASA Glenn Research, Hrsg. Broadband noise of fans-with unsteady coupling theory to account for rotor and stator reflection/transmission effects. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenWeil, Claude. Intercomparison of permeability and permittivity measurements using the transmission/reflection method in 7 and 14 mm coaxial air lines. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenLekner, John. Theory of Reflection: Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves. Springer, 2018.
Den vollen Inhalt der Quelle findenLekner, John. Theory of Reflection: Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves. Springer International Publishing AG, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Anomalous reflection and transmission"
Lu, Wei, und Ying Fu. „Reflection and Transmission“. In Springer Series in Optical Sciences, 73–106. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94953-6_3.
Der volle Inhalt der QuelleZaitsev, Alexander M. „Reflection and Transmission“. In Optical Properties of Diamond, 13–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04548-0_2.
Der volle Inhalt der QuelleCohen, Gary C. „Reflection-Transmission Analysis“. In Scientific Computation, 145–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04823-8_10.
Der volle Inhalt der QuelleHart, Bryan. „The Reflection Chart“. In Digital Signal Transmission, 23–36. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9707-0_3.
Der volle Inhalt der QuelleGarrett, Steven L. „Reflection, Transmission, and Refraction“. In Understanding Acoustics, 513–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_11.
Der volle Inhalt der QuelleGarrett, Steven L. „Reflection, Transmission, and Refraction“. In Understanding Acoustics, 603–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49978-9_11.
Der volle Inhalt der QuelleVistnes, Arnt Inge. „Reflection, Transmission and Polarization“. In Physics of Oscillations and Waves, 293–334. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72314-3_10.
Der volle Inhalt der QuelleWang, Gwo-Ching, und Toh-Ming Lu. „RHEED Reflection Mode“. In RHEED Transmission Mode and Pole Figures, 41–53. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9287-0_4.
Der volle Inhalt der QuelleTsuchiya, Keiko, und María Dolores Pérez Murillo. „Conclusion: CLIL—Reflection and Transmission“. In Content and Language Integrated Learning in Spanish and Japanese Contexts, 403–7. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27443-6_16.
Der volle Inhalt der QuelleSchmerr, Lester W. „Reflection and Transmission of Bulk Waves“. In Fundamentals of Ultrasonic Nondestructive Evaluation, 113–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30463-2_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Anomalous reflection and transmission"
Rana, Sylvie, Yallanki Sai Sreenija und A. R. Harish. „Specular Reflection Reduction of passive RIS for Single Beam Anomalous Reflection“. In 2024 Second International Conference on Microwave, Antenna and Communication (MAC), 1–5. IEEE, 2024. https://doi.org/10.1109/mac61551.2024.10837082.
Der volle Inhalt der QuelleLaMountain, Jacob, Amogh Raju, Daniel Wasserman und Viktor A. Podolskiy. „Enhancing light compression in photonic funnels with anomalous reflection“. In Metamaterials, Metadevices, and Metasystems 2024, herausgegeben von Nader Engheta, Mikhail A. Noginov und Nikolay I. Zheludev, 77. SPIE, 2024. http://dx.doi.org/10.1117/12.3027278.
Der volle Inhalt der QuelleHan, Jialiang, und Hui Li. „A Broadband Large-angle Anomalous Reflection Phase Gradient Metasurface“. In 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699835.
Der volle Inhalt der QuelleMovahediqomi, Mostafa, Sravan K. R. Vuyyuru, Grigory Ptitcyn, Risto Valkonen, Do-Hoon Kwon und Sergei A. Tretyakov. „Simultaneous Perfect Anomalous Reflection and Angle-of-Arrival Sensing Using Patch Arrays“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1497–98. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686489.
Der volle Inhalt der QuelleYue, Xiuli, Haiyan Xie, Kaihuai Wen, Quanfang Chen, Wenjiang Xu und Tiancheng Han. „Broadband Anomalous Reflection and Radar Cross Section Reduction Metasurface Based on Deep Learning“. In 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10618137.
Der volle Inhalt der QuelleGraglia, Roberto D., und Piergiorgio L. E. Uslengh. „Reflection and Transmission for Layered Composite Materials“. In 9th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, 83–87. IEEE, 1991. https://doi.org/10.23919/emc.1991.10781126.
Der volle Inhalt der QuelleTan, Zhen, Jianjia Yi, Badreddine Ratni und Shah Nawaz Burokur. „Anomalous Reflection or Refraction Based on Transmissive Metagratings with Few Meta-Atoms“. In 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI). IEEE, 2023. http://dx.doi.org/10.1109/usnc-ursi52151.2023.10237714.
Der volle Inhalt der QuelleLemarchand, F., A. Sentenac und H. Giovannini. „Study of the resonant behavior of waveguide-gratings Increasing the angular tolerance of guided-mode filters“. In Diffractive Optics and Micro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/domo.1998.dmb.4.
Der volle Inhalt der QuelleChen, Hao, Zhen Guo Liu, Wei Jun Wu und Wei Bing Lu. „Graphene based Anomalous Reflection at Microwave frequencies“. In 2019 IEEE Asia-Pacific Microwave Conference (APMC). IEEE, 2019. http://dx.doi.org/10.1109/apmc46564.2019.9038867.
Der volle Inhalt der QuelleLi, Zhiwei, Kun Lu, Lirong Huang, Li Min und Yali Sun. „High-Efficiency Anomalous Reflection by Continuous Metasurface“. In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/acpc.2014.ath3a.25.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Anomalous reflection and transmission"
Isakson, Marcia J. High Frequency Acoustic Reflection and Transmission in Ocean Sediments. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612088.
Der volle Inhalt der QuelleIsakson, Marcia J. High Frequency Acoustic Reflection and Transmission in Ocean Sediments. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531414.
Der volle Inhalt der QuelleIsakson, Marcia J. High Frequency Acoustic Reflection and Transmission in Ocean Sediments. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541171.
Der volle Inhalt der QuelleIsakson, Marcia J. High Frequency Acoustic Reflection and Transmission in Ocean Sediments. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada571663.
Der volle Inhalt der QuelleHurricane, O. A., und P. L. Miller. Shock transmission and reflection from a material interface and subsequent reflection from a hard boundary. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/6132.
Der volle Inhalt der QuelleAldridge, David F. Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1367459.
Der volle Inhalt der QuelleDeibele, C. Calculation fo the Reflection and Transmission Coefficients for Gradual Tapered Waveguide Structures. Office of Scientific and Technical Information (OSTI), Januar 1999. http://dx.doi.org/10.2172/1967497.
Der volle Inhalt der QuelleAbeyaratne, Rohan, und James K. Knowles. Reflection and Transmission of Waves from an Interface with a Phase- Transforming Solid. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada242455.
Der volle Inhalt der QuelleOughston, Kurt. The Asymptotic Theory of the Reflection and Transmission of a Pulsed Electromagnetic Beam Field at a Planar Interface Separating Two Dispersive Media. Fort Belvoir, VA: Defense Technical Information Center, März 1993. http://dx.doi.org/10.21236/ada269033.
Der volle Inhalt der QuelleBruce. L51642 Field Nondestructive Examination of ERW Pipe Seams. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 1991. http://dx.doi.org/10.55274/r0010587.
Der volle Inhalt der Quelle