Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Anode Li“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Anode Li" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Anode Li"
Su, Yu-Sheng, Kuang-Che Hsiao, Pedaballi Sireesha und Jen-Yen Huang. „Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries“. Batteries 8, Nr. 1 (04.01.2022): 2. http://dx.doi.org/10.3390/batteries8010002.
Der volle Inhalt der QuelleYang, Chunpeng, Lei Zhang, Boyang Liu, Shaomao Xu, Tanner Hamann, Dennis McOwen, Jiaqi Dai et al. „Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework“. Proceedings of the National Academy of Sciences 115, Nr. 15 (26.03.2018): 3770–75. http://dx.doi.org/10.1073/pnas.1719758115.
Der volle Inhalt der QuellePark, Se Hwan, Dayoung Jun, Gyu Hyeon Lee, Seong Gyu Lee, Ji Eun Jung und Yun Jung Lee. „Designing the 3D Porous Anode Based on Pore Size Dependent Li Deposition Behavior for Reversible Li Metal-Free Solid-State-Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 470. http://dx.doi.org/10.1149/ma2022-024470mtgabs.
Der volle Inhalt der QuelleBao, Wurigumula, und Ying Shirley Meng. „(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.
Der volle Inhalt der QuelleWang, Hansen, Yayuan Liu, Yuzhang Li und Yi Cui. „Lithium Metal Anode Materials Design: Interphase and Host“. Electrochemical Energy Reviews 2, Nr. 4 (12.10.2019): 509–17. http://dx.doi.org/10.1007/s41918-019-00054-2.
Der volle Inhalt der QuelleGabrisch, H., R. Yazami und B. Fultz. „Lattice defects in LiCoO2“. Microscopy and Microanalysis 7, S2 (August 2001): 518–19. http://dx.doi.org/10.1017/s143192760002866x.
Der volle Inhalt der QuelleFluegel, Marius, Karsten Richter, Margret Wohlfahrt-Mehrens und Thomas Waldmann. „Detection of Li Deposition on Si/Graphite Anodes from Commercial Li-Ion Cells - a Post-Mortem GD-OES Depth Profiling Study“. ECS Meeting Abstracts MA2022-02, Nr. 3 (09.10.2022): 239. http://dx.doi.org/10.1149/ma2022-023239mtgabs.
Der volle Inhalt der QuelleDasgupta, Neil P. „(Invited) Interfacial Dynamics of Anode-Free Solid-State Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 482. http://dx.doi.org/10.1149/ma2022-024482mtgabs.
Der volle Inhalt der QuelleZhao, Nahong, Lijun Fu, Lichun Yang, Tao Zhang, Gaojun Wang, Yuping Wu und Teunis van Ree. „Nanostructured anode materials for Li-ion batteries“. Pure and Applied Chemistry 80, Nr. 11 (01.01.2008): 2283–95. http://dx.doi.org/10.1351/pac200880112283.
Der volle Inhalt der QuelleMeng, Shirley. „Understanding Li Nucleation and Growth“. ECS Meeting Abstracts MA2023-01, Nr. 22 (28.08.2023): 1580. http://dx.doi.org/10.1149/ma2023-01221580mtgabs.
Der volle Inhalt der QuelleDissertationen zum Thema "Anode Li"
Cen, Yinjie. „Si/C Nanocomposites for Li-ion Battery Anode“. Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/468.
Der volle Inhalt der QuelleGullbrekken, Øystein. „Thermal characterisation of anode materials for Li-ion batteries“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19224.
Der volle Inhalt der QuelleFUGATTINI, Silvio. „Binder-free porous germanium anode for Li-ion batteries“. Doctoral thesis, Università degli studi di Ferrara, 2019. http://hdl.handle.net/11392/2488081.
Der volle Inhalt der QuellePer sviluppare batterie agli ioni di litio ad alta densità energetica, è necessario l’utilizzo di nuovi materiali elettrodici. Il germanio è una delle possibili alternative all’anodo più comunemente impiegato, la grafite (372 mAh/g), grazie alla sua capacità gravimetrica teorica quattro volte maggiore (1600 mAh/g). In questo lavoro viene presentato un processo in due fasi per realizzare un anodo in germanio poroso privo di legante (binder), realizzando film di semiconduttore su substrati metallici mediante deposizione chimica da fase vapore assisitita da plasma (PECVD) ed effettuando successivamente un attacco elettrochimico con acido fluoridrico per creare una struttura porosa. L’elettrodo in germanio poroso ha raggiunto una capacità di 1250 mAh/g ad una velocità di carica/scarica pari ad 1C (1C = 1600 mA/g) mantenendo, inoltre, una capacità stabilmente superiore a 1100 mAh/g per più di 1000 cicli a diversi C-rate fino a 5C. Sia la tecnica di deposizione che quella di attacco chimico sono scalabili per la produzione industriale, i cui possibili campi di applicazione sono il settore aerospaziale o medico, a causa dell’elevato costo del germanio come materia prima.
Janíček, Zdeněk. „Stabilita katodového materiálu pro LI-ion akumulátory“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220974.
Der volle Inhalt der QuelleBuiel, Edward. „Lithium insertion in hard carbon anode materials for Li-ion batteries“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0013/NQ36573.pdf.
Der volle Inhalt der QuelleMayo, Martin. „Ab initio anode materials discovery for Li- and Na-ion batteries“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/270545.
Der volle Inhalt der QuelleHapuarachchi, Sashini Neushika Sue. „Fabrication and characterization of silicon based electrodes for Li-ion batteries“. Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/207430/1/Sashini_Hapuarachchi_Thesis.pdf.
Der volle Inhalt der QuelleVallachira, Warriam Sasikumar Pradeep. „Study of Silicon Oxycarbide(SiOC) as Anode Materials for Li-ion Batteries“. Doctoral thesis, Università degli studi di Trento, 2013. https://hdl.handle.net/11572/368129.
Der volle Inhalt der QuelleVallachira, Warriam Sasikumar Pradeep Pradeep. „Study of Silicon Oxycarbide(SiOC) as Anode Materials for Li-ion Batteries“. Doctoral thesis, University of Trento, 2013. http://eprints-phd.biblio.unitn.it/1112/1/PhD_Thesis_Vallachira_Pradeep.pdf.
Der volle Inhalt der QuelleVERSACI, DANIELE. „Materials for high energy Li-ion and post Li-ion batteries“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2896992.
Der volle Inhalt der QuelleBücher zum Thema "Anode Li"
Mogensen, Mogens. Kinetics of LiCl Film Formation on Li Anodes in SOCl2. Roskilde, Denmark: Riso National Laboratory, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Anode Li"
Hassan, Afaq, Saima Nazir, M. Sagir, Tausif Ahmad und M. B. Tahir. „Metallic Li Anode: An Introduction“. In Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications, 169–86. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2796-8_10.
Der volle Inhalt der QuelleHien Nguyen, Thi Dieu, Hai Duong Pham, Shih-Yang Lin, Ngoc Thanh Thuy Tran und Ming-Fa Lin. „Fundamental Properties of Li+-Based Battery Anode“. In Lithium-Ion Batteries and Solar Cells, 59–77. First edition. | Boca Raton, FL : CRC Press/ Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003138327-4.
Der volle Inhalt der QuelleSamaras, I., L. Tsiakiris, S. Kokkou, O. Valassiades und Th Karakostas. „Li-Si System Studies as Possible Anode For Li-Ion Batteries“. In New Trends in Intercalation Compounds for Energy Storage, 597–600. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0389-6_55.
Der volle Inhalt der QuellePribat, Didier. „Silicon nanowires for Li-based battery anode applications“. In Silicon Nanomaterials Sourcebook, 455–74. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2017] | Series: Series in materials science and engineering: CRC Press, 2017. http://dx.doi.org/10.4324/9781315153544-23.
Der volle Inhalt der QuelleKim, Chan, und Morinobu Endo. „Anode Performance of the Li-Ion Secondary Battery“. In Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance, 255–75. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-1013-9_15.
Der volle Inhalt der QuelleTsurumaki, Akiko, Sergio Brutti, Giorgia Greco und Maria Assunta Navarra. „Closed Battery Systems“. In The Materials Research Society Series, 173–211. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_10.
Der volle Inhalt der QuelleKang, Chiwon, Indranil Lahiri, Rangasamy Baskaran, Mansoo Choi, Won-Gi Kim, Yang-Kook Sun und Wonbong Choi. „3D Multiwall Carbon Nanotubes (MWCNTs) for Li-Ion Battery Anode“. In Supplemental Proceedings, 35–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118357002.ch5.
Der volle Inhalt der QuelleNguyen-Huu, T., und Q. Le-Minh. „Stress Analysis of Silicon-Based Anode in Li-Ion Battery“. In Proceedings of the International Conference on Advances in Computational Mechanics 2017, 95–104. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7149-2_7.
Der volle Inhalt der QuelleWang, Heng, Bing Li und Zuxin Zhao. „Electrodeposited Si-Al Thin Film as Anode for Li Ion Batteries“. In TMS 2014: 143rd Annual Meeting & Exhibition, 891–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48237-8_105.
Der volle Inhalt der QuelleWang, Heng, Bing Li und Zuxin Zhao. „Electrodeposited Si-Al Thin Film as Anode for Li Ion Batteries“. In TMS 2014 Supplemental Proceedings, 891–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118889879.ch105.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Anode Li"
Hess, Robert, Jeff Britt, Joshua Stewart und Mark Niedzwiecki. „Use of a High Energy-Dense Li Anode Cell for an eVTOL Application“. In Vertical Flight Society 76th Annual Forum & Technology Display. The Vertical Flight Society, 2020. http://dx.doi.org/10.4050/f-0076-2020-16406.
Der volle Inhalt der QuelleLiu, Teng, Xiao-Guang Yang und Chao-Yang Wang. „Discovery and Development of a Fast Charging Li-Ion Battery“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87661.
Der volle Inhalt der QuelleWu, James J., und William R. Bennett. „Fundamental investigation of Si anode in Li-Ion cells“. In 2012 IEEE Energytech. IEEE, 2012. http://dx.doi.org/10.1109/energytech.2012.6304667.
Der volle Inhalt der QuelleLi, Hong, Lihong Shi, Wei Lu, Xuejie Huang und Liquan Chen. „Nanosized alloy-based anode materials for Li ion batteries“. In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0052.
Der volle Inhalt der QuelleSharma, N., K. M. Shaju, G. V. Subba Rao und B. V. R. Chowdari. „CaSnO3: a high capacity anode material for Li-ion batteries“. In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0011.
Der volle Inhalt der QuellePurwanto, Agus, Endah Dyartanti, Inayati, Wahyudi Sutopo und Muhammad Nizam. „Synthesis of titania for anode material of Li-Ion battery“. In 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T). IEEE, 2013. http://dx.doi.org/10.1109/rict-icevt.2013.6741524.
Der volle Inhalt der QuelleGavrilin, Ilya, Timofey Savchuk, Alexey Dronov und Tatiana Kulova. „TiO2 nanotubular arrays as anode materials for li-ion batteries“. In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2017. http://dx.doi.org/10.1109/eiconrus.2017.7910830.
Der volle Inhalt der QuelleLou, Xiong Wen (David). „Metal Oxide based Nanostructured Anode Materials for Li-ion Batteries“. In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_543.
Der volle Inhalt der QuelleArro, Christian, Assem Mohamed und Nasr Bensalah. „Germanium Oxide/germanium/ reduced Graphene (GeO2/Ge/r-GO) Hybrid Composite Anodes for Lithium-ion Batteries: Effect of Ge loading on Electrochemical Performance“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0065.
Der volle Inhalt der QuelleIdrissi, Siham, Zineb Edfouf, Omar Benabdallah, Abdelfettah Lallaoui und Fouzia Cherkaoui El Moursli. „Tin Phosphite SnHPO3 a New Anode Material for Li-ion Batteries“. In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2018. http://dx.doi.org/10.1109/irsec.2018.8702926.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Anode Li"
Lake, Carla. High performance anode for advanced Li batteries. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1224711.
Der volle Inhalt der QuelleB. Fultz. Anode Materials for Rechargeable Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), Januar 2001. http://dx.doi.org/10.2172/773359.
Der volle Inhalt der QuelleHerle, Subra, und Ajey Joshi. Advanced Anode Manufacturing through Ultra-Thin Li Deposition. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2341379.
Der volle Inhalt der QuelleWhite, Ralph E., und Branko N. Popov. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), Oktober 2002. http://dx.doi.org/10.2172/900477.
Der volle Inhalt der QuelleDr. Malgorzata Gulbinska. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's). Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/962928.
Der volle Inhalt der QuelleGross, M. E., E. S. Mast, J. P. Lemmon und R. L. Pearson III. Development of an Anode Stabilization Layer for High Energy Li-S Cells for Electric Vehicles. Office of Scientific and Technical Information (OSTI), März 2012. http://dx.doi.org/10.2172/1038137.
Der volle Inhalt der QuelleGratz, Eric. Recovery of High Value Anode Materials for a Closed Loop Li-ion Battery Recycling Process (Final Report). Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614871.
Der volle Inhalt der QuelleVisco, Steven J. Advanced Lithium Anodes for Li/Air and Li/Water Batteries. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2005. http://dx.doi.org/10.21236/ada441240.
Der volle Inhalt der QuelleWANG, DONGHAI, und TIEN DUONG. Electrochemically Responsive Self-Formed Li-ion Conductors for High Performance Li Metal Anodes. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1579536.
Der volle Inhalt der QuelleMikhaylik, Yuriy. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1368169.
Der volle Inhalt der Quelle