Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Anisotropie distribuée“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Anisotropie distribuée" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Anisotropie distribuée"
Rongkonusa, Melisa, Gerald Tamuntuan und Guntur Pasau. „Analisis Anisotropi Suseptibilitas Magnetik Batuan Beku Lengan Utara Sulawesi“. Jurnal MIPA 6, Nr. 1 (02.05.2017): 8. http://dx.doi.org/10.35799/jm.6.1.2017.15846.
Der volle Inhalt der QuelleHasheminejad, S. M., und M. Maleki. „Effect of Interface Anisotropy on Elastic Wave Propagation in Particulate Composites“. Journal of Mechanics 24, Nr. 1 (März 2008): 79–93. http://dx.doi.org/10.1017/s1727719100001581.
Der volle Inhalt der QuelleLiu, Honglei, Wenhao Shi und Tianhong Yang. „Numerical Modeling on Anisotropy of Seepage and Stress Fields of Stratified Rock Slope“. Mathematical Problems in Engineering 2020 (07.04.2020): 1–10. http://dx.doi.org/10.1155/2020/4956025.
Der volle Inhalt der QuelleStiskalek, Richard, John Veitch und Chris Messenger. „Are stellar-mass binary black hole mergers isotropically distributed?“ Monthly Notices of the Royal Astronomical Society 501, Nr. 1 (21.11.2020): 970–77. http://dx.doi.org/10.1093/mnras/staa3613.
Der volle Inhalt der QuelleTrach, V. M., A. V. Podvornyi und N. B. Zhukova. „Stability of non-thin anisotropic cylindrical shells in spatial position under distributed lateral pressure“. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, Nr. 2 (2023): 152–55. http://dx.doi.org/10.17721/1812-5409.2023/2.26.
Der volle Inhalt der QuelleLi, Wei, Douglas R. Schmitt, Maria Tibbo und Changchun Zou. „A program to calculate the state of stress in the vicinity of an inclined borehole through an anisotropic rock formation“. GEOPHYSICS 84, Nr. 5 (01.09.2019): F103—F118. http://dx.doi.org/10.1190/geo2018-0097.1.
Der volle Inhalt der QuelleAbbasnejadfard, Morteza, Morteza Bastami und Afshin Fallah. „Investigation of anisotropic spatial correlations of intra-event residuals of multiple earthquake intensity measures using latent dimensions method“. Geophysical Journal International 222, Nr. 2 (21.05.2020): 1449–69. http://dx.doi.org/10.1093/gji/ggaa255.
Der volle Inhalt der QuelleMALARZ, K. „A SIMPLE SOLID-ON-SOLID MODEL OF EPITAXIAL FILM GROWTH: SUBMONOLAYER SUBSTRATE COVERAGE“. International Journal of Modern Physics C 11, Nr. 08 (Dezember 2000): 1561–66. http://dx.doi.org/10.1142/s0129183100001449.
Der volle Inhalt der QuelleБезверхний, А. И., А. Д. Таланцев, Ю. Е. Калинин, А. В. Ситников, В. A. Никитенко, О. В. Коплак, О. С. Дмитриев und Р. Б. Моргунов. „Магнитная анизотропия многослойных гетероструктур [(Co-=SUB=-41-=/SUB=-Fe-=SUB=-39-=/SUB=-B-=SUB=-20-=/SUB=-)-=SUB=-x-=/SUB=-(SiO-=SUB=-2-=/SUB=-)-=SUB=-100-x-=/SUB=-/Bi-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=-]-=SUB=-47-=/SUB=-“. Физика твердого тела 61, Nr. 2 (2019): 266. http://dx.doi.org/10.21883/ftt.2019.02.47124.235.
Der volle Inhalt der QuelleKumar, Rajneesh, und Raj Rani Gupta. „Deformation due to various sources in a fibre-reinforced anisotropic generalized thermoelastic medium“. Canadian Journal of Physics 87, Nr. 2 (Februar 2009): 179–87. http://dx.doi.org/10.1139/p09-017.
Der volle Inhalt der QuelleDissertationen zum Thema "Anisotropie distribuée"
Catapano, Anita. „Optimisation en Rigidité et Résistance de l'Anisotropie distribuée pour Structures Stratifiées“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00952372.
Der volle Inhalt der QuelleCianci, Christopher Michael. „Distributed intelligent algorithms for robotic sensor networks monitoring discontinuous anisotropic environmental fields /“. Lausanne : EPFL, 2009. http://library.epfl.ch/theses/?nr=4247.
Der volle Inhalt der QuelleFooladi, Samaneh, und Tribikram Kundu. „Application of distributed point source method (DPSM) to wave propagation in anisotropic media“. SPIE-INT SOC OPTICAL ENGINEERING, 2017. http://hdl.handle.net/10150/625391.
Der volle Inhalt der QuelleFischer, Jiří. „Analýza vlivu směrové distribuce kolagenních vláken ve stěně tepny na její mechanické vlastnosti“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-418206.
Der volle Inhalt der QuelleViville, Quentin. „A method of hp-adaptation for Residual Distribution schemes“. Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0408/document.
Der volle Inhalt der QuelleThis thesis presents the construction of a p-adaptive Residual Distribution scheme for the steady Euler equations and a hp-adaptive Residual Distribution scheme for the steady penalized Navier-Stokes equations in dimension two and three. The Euler and Navier-Stokes equations are recalled along with their non dimensional versions. The basis definitions and properties of the steady Residual Distribution schemes are presented. Then, the construction of a p-adaptive Residual Distribution scheme for the Euler equations is considered. The construction of the p-adaptive scheme is based upon the expression of the total residual of an element of a given degree k (in the Finite Element sense) into the total residuals of its linear sub-elements. The discrete solution obtained with the p-adaptive scheme is then a one degree polynomial in the divided elements and a k-th degree polynomial in the undivided ones. Therefore, the discrete solution is in general discontinuous at the interface between a divided element and an undivided one. This is in apparent contradiction with the continuity assumption used in general to demonstrate the discrete Lax-Wendroff theorem for Residual Distribution schemes. However, as we show in this work, this constrain can be relaxed. The consequence is that if special quadrature formulas are employed in the numerical implementation, the discrete Lax-Wendroff theorem can still be proved, which guaranties the convergence of the p-adaptive scheme to a weak solution of the governing equations. The formulas that express the total residual into the combination of the total residuals of the sub-elements are central to the method. In dimension two, the formula is obtained with the classical Lagrange basis in the quadratic case and with the Bézier basis in dimension three. These two formulas are then generalized to arbitrary polynomial degrees in dimension two and three with a Bézier basis. In the second part of the thesis the application of the p-adaptive scheme to the penalized Navier-Stokes equations with anisotropic mesh adaptation is presented. In practice, the p-adaptive scheme is used with the IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes) method. The IBM-LS-AUM allows to impose the boundary conditions with the penalization method and the mesh adaptation to the solution and to the level-set increases the accuracy of the representation of the surface and the solution around walls. When the IBM-LSAUM is combined with the p-adaptive scheme, it is possible to use high-order elements outside the zone where the penalization is applied. The method is robust as shown by the numerical applications at low to large Mach numbers and at different Reynolds in dimension two and three
Jacq, Pascal. „Méthodes numériques de type Volumes Finis sur maillages non structurés pour la résolution de la thermique anisotrope et des équations de Navier-Stokes compressibles“. Phd thesis, 2014. http://tel.archives-ouvertes.fr/tel-01067707.
Der volle Inhalt der QuelleDans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique anisotrope. Nous présentons l'extension en trois dimensions de ce schéma ainsi que sa parallélisation.
Nous continuons le manuscrit en abordant l'extension de ce schéma à une équation de diffusion tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l'équation de quantité de mouvement des équations de Navier-Stokes. Nous verrons qu'une pénalisation doit être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des validations numériques.
Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis permettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en réutilisant les deux schémas de diffusion présentés précédemment.
Kubíčková, Lenka. „Relaxivita magnetických nanočástic oxidů železa obsahujících diamagnetické kationty“. Master's thesis, 2017. http://www.nusl.cz/ntk/nusl-355651.
Der volle Inhalt der QuelleBuchteile zum Thema "Anisotropie distribuée"
Rand, Omri, und Vladimir Rovenski. „Anisotropic Elastic Beams With Axially Distributed Loads“. In Solid Mechanics and Its Applications, 269–83. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3467-0_21.
Der volle Inhalt der QuelleTelega, Józef Joachim, und Włodzimierz Robert Bielski. „Exact controllability of anisotropic elastic bodies“. In Modelling and Optimization of Distributed Parameter Systems Applications to engineering, 254–62. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-0-387-34922-0_26.
Der volle Inhalt der QuelleM., Lakshmi Priya, und Lalit K. Awasthi. „Distributed Localization for Anisotropic Sensor Networks Using Spatial Clustering“. In Lecture Notes in Computer Science, 375–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29280-4_44.
Der volle Inhalt der QuelleGoloveshkina, Evgeniya V., und Leonid M. Zubov. „Nonlinear Deformations of Anisotropic Elastic Bodies with Distributed Dislocations“. In Advanced Structured Materials, 119–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28744-2_7.
Der volle Inhalt der QuelleFlores, Marco Antonio Ameller, und Angélica González Arrieta. „Fingerprint Orientation Field Estimation Using ROEVA (Ridge Orientation Estimation and Verification Algorithm) and ADF (Anisotropic Diffusion Filtering)“. In Distributed Computing and Artificial Intelligence, 13th International Conference, 265–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40162-1_29.
Der volle Inhalt der QuelleEhret, A. E., M. Itskov und G. Weinhold. „A Viscoelastic Anisotropic Model for Soft Collageneous Tissues Based on Distributed Fiber–Matrix Units“. In IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 55–65. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3348-2_5.
Der volle Inhalt der QuelleRossikhin, Yury A., und Marina V. Shitikova. „Harmonic Waves in an Anisotropic Medium Generated by Heat Sources Distributed Along the Plane“. In Encyclopedia of Thermal Stresses, 2120–34. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_939.
Der volle Inhalt der QuelleKühn, Martin. „Parallelization of an Edge- and Coherence-Enhancing Anisotropic Diffusion Filter with a Distributed Memory Approach Based on GPI“. In Competence in High Performance Computing 2010, 99–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24025-6_9.
Der volle Inhalt der QuelleBalakrishnan, A. V. „Dynamics and Control of Articulated Anisotropic Timoshenko Beams“. In Dynamics and Control of Distributed Systems, 121–201. Cambridge University Press, 1998. http://dx.doi.org/10.1017/cbo9780511530180.005.
Der volle Inhalt der QuelleTang, Tengteng, Dylan Joralmon und Xiangjia Li. „3D Printing of Biomimetic Functional Nanocomposites via Vat Photopolymerization“. In Advances in 3D Printing [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110413.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Anisotropie distribuée"
Paddon, P., E. Sjerve und G. M. Stephan. „Stability of polarized modes in a strongly anisotropic laser cavity“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.wss.7.
Der volle Inhalt der QuelleJohnson, R. V., und A. R. Tanguay. „Optical beam propagation in anisotropic media“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.fs1.
Der volle Inhalt der QuelleSchiller, Noah H., Randolph H. Cabell, Juan D. Quinones und Nathan C. Wier. „Active Damping Using Distributed Anisotropic Actuators“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37503.
Der volle Inhalt der QuelleShtanko, E. I. „PROPAGATION OF AN ELECTROMAGNETIC FIELD IN AN ANISOTROPIC LAYERED MEDIUM“. In All-Russian Youth Scientific Conference with the Participation of Foreign Scientists Trofimuk Readings - 2021. Novosibirsk State University, 2021. http://dx.doi.org/10.25205/978-5-4437-1251-2-189-192.
Der volle Inhalt der QuelleHervin, Flora, und Paul Fromme. „Directionally Dependent Guided Wave Scattering for the Monitoring of Anisotropic Composite Structures“. In 2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/qnde2022-98367.
Der volle Inhalt der QuelleGunhee Kim, Eric P. Xing, Li Fei-Fei und Takeo Kanade. „Distributed cosegmentation via submodular optimization on anisotropic diffusion“. In 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, 2011. http://dx.doi.org/10.1109/iccv.2011.6126239.
Der volle Inhalt der QuelleFisher, Matthew B., Elizabeth A. Henning, John L. Esterhai und Robert L. Mauck. „Fabrication of Organized Nanofibrous Scaffolds to Mimic the Macroscopic Curvature of the Meniscus: Structure and Mechanics“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80568.
Der volle Inhalt der QuelleRezaei, Amir G., und Amin Tabatabaei Mohseni. „Anisotropic Elasticity Solution of Single Layered Composite Plate Under Self-Equilibrating Cubically Distributed Shear Loading“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72009.
Der volle Inhalt der QuelleKorotkova, Olga. „Deterministic and random beam propagation in anisotropic turbulence“. In Propagation through and Characterization of Distributed Volume Turbulence and Atmospheric Phenomena. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pcdvtap.2015.pt4c.1.
Der volle Inhalt der QuelleBhat, Soumya J., und Santhosh K. V. „Priority Based Localization for Anisotropic Wireless Sensor Networks“. In 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2020. http://dx.doi.org/10.1109/discover50404.2020.9278090.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Anisotropie distribuée"
Choudhury, Sarah, Ross Underhill und Thomas Krause. PR-652-203801-R04 Magnetometer Noise and Resolution. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2021. http://dx.doi.org/10.55274/r0012196.
Der volle Inhalt der Quelle