Inhaltsverzeichnis

  1. Dissertationen

Auswahl der wissenschaftlichen Literatur zum Thema „Anisotropic energy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Anisotropic energy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Dissertationen zum Thema "Anisotropic energy"

1

Strümpfer, Johan. "Computing free energy hypersurfaces for anisotropic intermolecular associations." Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/6290.

Der volle Inhalt der Quelle
Annotation:
Includes abstract.<br>Includes bibliographical references.<br>Adaptive reaction coordinate force biaisng methods have been previously used for calculating the free energy of conformation and chemical reactions amongst others. Here a generalized method is described that is able to produce free energies in multiple dimension, descriptively named the free energies from adaptive reaction coordinate forces (FEARCF) method. To illustrate it a multidemensional intermolecular orientational free energy surface is calculated, and it is demonstrated how to invesrigate complex systems such as protein conformation and liquids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Steiner, Pinckney Alston IV. "Anisotropic low-energy electron-enhanced etching of semiconductors in DC plasma." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/27060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cai, Renye. "Original strain energy density functions for modeling of anisotropic soft biological tissue." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA003/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse a porté sur la construction de densités d'énergie de déformation permettant de décrire le comportement non linéaire de matériaux anisotropes tels que les tissus biologiques souples (ligaments, tendons, parois artérielles etc.) ou les caoutchoucs renforcés par des fibres. Les densités que nous avons proposées ont été élaborées en se basant sur la théorie mathématique des polynômes invariants et notamment sur le théorème de Noether et l'opérateur de Reynolds. Notre travail a concerné deux types de matériaux anisotropes, le premier avec une seule famille de fibre et le second avec quatre familles. Le concept de polyconvexité a également été étudié car il est notoire qu'il joue un rôle important pour s'assurer de l'existence de solutions. Dans le cas d'un matériau comportant une seule famille de fibre, nous avons démontré qu'il était impossible qu'une densité polynomiale de degré quelconque puisse prédire des essais de cisaillement avec un chargement parallèle puis perpendiculaire à la direction des fibres. Une densité polynomiale linéaire combinée avec une fonction puissance a permis de contourner cet obstacle. Dans le cas d'un matériau comportant quatre familles de fibre, une densité polynomiale a permis de prédire correctement des résultats d'essai en traction bi-axiale extraits de la littérature. Les deux densités proposées ont été implémentées avec la méthode des éléments finis et en langage C++ dans le code de calcul universitaire FER. Pour se faire, une formulation lagrangienne totale a été adoptée. L'implémentation a été validée par des comparaisons avec des solutions analytiques de référence que nous avons exhibée dans le cas de chargements simples conduisant à des déformations homogènes. Des exemples tridimensionnels plus complexes, impliquant des déformations non-homogènes, ont également été étudiés<br>This thesis has focused on the construction of strain energy densities for describing the non-linear behavior of anisotropic materials such as biological soft tissues (ligaments, tendons, arterial walls, etc.) or fiber-reinforced rubbers. The densities we have proposed have been developed with the mathematical theory of invariant polynomials, particularly the Noether theorem and the Reynolds operator. Our work involved two types of anisotropic materials, the first with a single fiber family and the second with a four-fiber family. The concept of polyconvexity has also been studied because it is well known that it plays an important role for ensuring the existence of solutions. In the case of a single fiber family, we have demonstrated that it is impossible for a polynomial density of any degree to predict shear tests with a loading parallel and then perpendicular to the direction of the fibers. A linear polynomial density combined with a power-law function allowed to overcome this problem. In the case of a material made of a four-fiber family, a polynomial density allowed to correctly predict bi-axial tensile test data extracted from the literature. The two proposed densities were implemented in C++ language in the university finite element software FER by adopting a total Lagrangian formulation. This implementation has been validated by comparisons with reference analytical solutions exhibited in the case of simple loads leading to homogeneous deformations. More complex three-dimensional examples, involving non-homogeneous deformations, have also been studied
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fogli, Simone. "Forecasts on the dark energy anisotropic stress for the esa euclid survey." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5614/.

Der volle Inhalt der Quelle
Annotation:
The cosmological constant Λ seems to be a not satisfactory explanation of the late-time accelerated expansion of the Universe, for which a number of experimental evidences exist; therefore, it has become necessary in the last years to consider alternative models of dark energy, meant as cause of the accelerated expansion. In the study of dark energy models, it is important to understand which quantities can be determined starting from observational data, without assuming any hypothesis on the cosmological model; such quantities have been determined in Amendola, Kunz et al., 2012. In the same paper it has been further shown that it is possible to estabilish a relation between the model-independent parameters and the anisotropic stress η, which can be also expressed as a combination of the functions appearing in the most general Lagrangian for the scalar-tensor theories, the Horndeski Lagrangian. In the present thesis, the Fisher matrix formalism is used to perform a forecast on the constraints that will be possible to make on the anisotropic stress η in the future, starting from the estimated uncertainties for the galaxy clustering and weak lensing measurements which will be performed by the European Space Agency Euclid mission, to be launched in 2020. Further, constraints coming from supernovae-Ia observations are considered. The forecast is performed for two cases in which (a) η is considered as depending from redshift only and (b) η is constant and equal to one, as in the ΛCDM model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Xu, Hao. "Theoretical and numerical modeling of anisotropic damage in rock for energy geomechanics." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53035.

Der volle Inhalt der Quelle
Annotation:
At present, most of the energy power consumed in the world is produced by fossil fuel combustion, which has raised increasing interest in renewable energy technologies, non-conventional oil and gas reservoirs, and nuclear power. Innovative nuclear fuels and reactors depend on the economical and environmental impacts of waste management. Disposals in mined geological formations are viewed as potential consolidated storage facilities before final disposition. Different stress paths during construction result in different kinds of failure mechanisms, which alter rock strength and induce anisotropy of rock elastic properties. Crack propagation in rock can be originated by these engineering activities (excavation, drilling, mining, building overburden), or by changes of the natural environment (tectonic processes, erosion or weathering). Damage is a mathematical variable that can represent a variety of microstructure changes, such as crack density, length, aspect ratio and orientation. The framework of Continuum Damage Mechanics allows modeling the resulting reduction in strength and stiffness, as well as the associated stress-induced anisotropy and irreversible deformation. This work presents a modeling framework for anisotropic crack propagation in rock, in conditions of stress typical of geological storage and oil and gas extraction. Emphasis is put on the prediction of the damage zone around cavities and ahead of pressurized fracture tips. An original model of anisotropic damage, the Differential Stress Induced Damage (DSID) model, is explained. The Drucker-Prager yield function is adapted to make the damage threshold depend on damage energy release rate and to distinguish between tension and compression strength. Flow rules are derived with the energy release rate conjugate to damage, which is thermodynamically consistent. The positivity of dissipation is ensured by using a non-associate flow rule for damage, while nonelastic deformation due to damage is computed by an associate flow rule. Stress paths simulated at the material point illustrate damaged stiffness and deformation variations in classical rock mechanics tests. The maximum likelihood method was employed to calibrate and verify the DSID model against stress-strain curves obtained during triaxial compression tests and uniaxial compression tests performed on clay rock and shale. Logarithmic transformation, normalization and forward deletion allowed optimizing the formulation of the DSID model, and reduce the number of damage constitutive parameters from seven to two for clay rock. The DSID model was implemented in ABAQUS Finite Element (FE) software. The iterative scheme was adapted in order to account for the non-linearities induce both by damage and damage-induced deformation. FE simulations of laboratory tests capture size an intrinsic anisotropy effects on the propagation of damage in rock. Smeared DSID zones representing shale delamination planes avoid some convergence problems encountered when modeling discontinuities with debonded contact surface elements. FE simulations of tunnel excavation, fracture propagation and borehole pressurization were performed to illustrate the evolution of the damage zone and the impact on energy dissipation, anisotropy of deformation, and loss of stiffness. Future work will focus on coupling the propagation of fractures with the evolution of the damage process zone, and on the transition from continuum damage to discrete fracture upon crack coalescence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hamad, Wadwood Y. "Energy-balance equations for in-roll stresses for anisotropic materials in wound rolls." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60599.

Der volle Inhalt der Quelle
Annotation:
This Thesis concerns itself with the thorough investigation of the effects of core material parameters on the structural behaviour of wound rolls in core-roll winding systems. The underlying theme in this work is the derivation, based on the theory of elasticity, of an analytic expression for the core material's elasticity modulus as a function of only material parameters and geometry.<br>The approach undertaken herein is purely theoretical and encompasses the rigorous analysis of principally two models; linear isotropic and anisotropic. As for the former, both planar and axisymmetric geometries are investigated; and in the case of the anisotropic model, an axisymmetric plane stress situation is studied. Moreover, finite-element modelling and analysis for the isotropic condition is carried out to confirm the theoretical findings. The objective is then to apply the results; namely, the inclusion of Poisson's ratio and elasticity modulus of the core material, to modify existing energy-balance roll structure formulae. This undertaking is called for if the aim is to have a valid winding model that simulates the actual winding process; i.e., one which incorporates sensing the presence of the core through layers of wound material. Results are further compared with existing winding models and conclusions are given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pröchtel, Patrick. "Anisotrope Schädigungsmodellierung von Beton mit adaptiver bruchenergetischer Regularisierung Anisotropic damage modeling of concrete regularized by means of the adaptive fracture energy approach /." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1224751435667-29771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gamieldien, Mogamat Riedaa. "Parameterization of the Gay-Berne coarse-grained potential from atomistically detailed anisotropic free energy volumes." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10567.

Der volle Inhalt der Quelle
Annotation:
Includes bibliographical references.<br>Simulating a system of 300,000+ atoms, such as an explicitly solvated protein using all atom molecular dynamics on the microsecond time-scale, would require an enormous amount of computing power and specialized software, even with which would still require months of computing time. However, if the atomic degrees of freedom of the system can be reduced (or averaged) in some physically intuitive manner, while still retaining a connection with the underlying atomistic detail, microsecond simulations could be achieved within weeks or days. Coarse-graining, a sub-class of mesoscale modelling, is used to represent molecules in a reduced form as either regular spheroids (ellipsoids) or as continuum models, using specialized interaction potentials. The Gay-Berne is a one such coarse-grain potential, which has been particularly successful in that it has been used in modelling of liquid crystals, protein dynamics and lipid membrane and micelle formation...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stevenson, Kip Patrick. "Anisotropic potential energy surfaces for atmospheric gas : unsaturated hydrocarbon molecule interactions from differential scattering experiments /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/11613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Bin. "The variational approach to brittle fracture in materials with anisotropic surface energy and in thin sheets." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/393861.

Der volle Inhalt der Quelle
Annotation:
Fracture mechanics of brittle materials has focused on bulk materials with isotropic surface energy. In this situation different physical principles for crack path selection are very similar or even equivalent. The situation is radically different when considering crack propagation in brittle materials with anisotropic surface energy. Such materials are important in applications involving single crystals, extruded polymers, or geological and organic materials. When this anisotropy is strong, the phenomenology of crack propagation becomes very rich, with forbidden crack propagation directions or complex sawtooth crack patterns. Thus, this situation interrogates fundamental issues in fracture mechanics, including the principles behind the selection of crack direction. Similarly, tearing of brittle thin elastic sheets, ubiquitous in nature, technology and daily life, challenges our understanding of fracture. Since tearing typically involves large geometric nonlinearity, it is not clear whether the stress intensity factors are meaningful or if and how they determine crack propagation. Geometry, together with the interplay between stretching and bending deformation, leads to complex behaviors, restricting analytical approximate solutions to very simplified settings and specific parameter regimes. In both situations, a rich and nontrivial experimental record has been successfully understood in terms of simple energetic models. However, general modeling approaches to either fracture in the presence of strong surface energy anisotropy or to tearing, capable of exploring new physics, have been lacking. The success of energetic simple models suggests that variational theories of brittle fracture may provide a unifying and general framework capable of dealing with the more general situations considered here. To address fracture in materials with strongly anisotropic surface energy, we propose a variational phase-field model resorting to the extended Cahn-Hilliard framework proposed in the context of crystal growth. Previous phase-field models for anisotropic fracture were formulated in a framework only allowing for weak anisotropy. We implement numerically our higher-order phase-field model with smooth local maximum entropy approximants in a direct Galerkin method. The numerical results exhibit all the features of strongly anisotropic fracture, and reproduce strikingly well recent experimental observations. To explore tearing of thin films, we develop a geometrically exact model and a computational framework coupling elasticity (stretching and bending), fracture, and adhesion to a substrate. We numerically implement the model with subdivision surface finite elements. Our simulations qualitatively and quantitatively reproduced the crack patterns observed in tearing experiments. Finally, we examine how shell geometry affects fracture. As suggested by previous results and our own phase-field simulations, shell shape dramatically affects crack evolution and the effective toughness of the shell structure. To gain insight and eventually develop new concepts for optimizing the design of thin shell structures, we derive the configurational force conjugate to crack extension for Koiter's linear thin shell theory. We identify the conservative contribution to this force through an Eshelby tensor, as well as non-conservative contributions arising from curvature.<br>La mécanica de fractura frágil se ha centrado en materiales tridimensionales con una energía de superficie isotrópica. En esta situación, los diferentes principios para la selección del camino de la fisura son muy similares, o incluso equivalentes. La situación es radicalmente opuesta cuando se considera la propagación de fisuras en medios con energía de superficie anisótropa. Estos materiales son importantes en aplicaciones que involucran materiales cristalinos, polímeros extrudidos, o materiales orgánicos y geológicos. Cuando la anisotropía es fuerte, el fenómeno de la propagación de fisuras es muy rico, con direcciones de propagación prohibidas o complejos patrones de ruptura en dientes de sierra. Por tanto, esta situación plantea cuestiones fundamentales en la mecánica de la fractura, incluyendo los principios de selección de la dirección de propagación de la fractura. Igualmente, el proceso de rasgado de láminas delgadas y frágiles, comunes en la naturaleza, la tecnología y la vida diaria, desafía nuestro entendimiento de la fractura. Dado que el rasgado de estas láminas típicamente involucra grandes no linealidades geométricas, no está claro si los factores de intensidad de esfuerzos son válidos o si, y en tal caso cómo determinan la propagación de fisuras. La interacción entre la geometría, las deformaciones y la curvatura da lugar a comportamientos complejos, lo que restringe las soluciones analíticas aproximadas a ejemplos muy simplificados y a regímenes de parámetros limitados. En ambas situaciones, se han podido interpretar experimentos no triviales con modelos energéticos simples. Sin embargo, no se ha profundizado en modelos generales de fractura en presencia de energía de superficie fuertemente anisótropa o en láminas delgadas, ambas interesantes por su capacidad para explorar nueva física. El mencionado éxito de los modelos energéticos simplificados sugiere que las teorías variacionales de fractura en medios frágiles pueden proveer un marco unificador para considerar situaciones más generales, como las que se consideran en este trabajo. Para caracterizar la fractura en materiales con energía de superficie fuertemente anisótropa, proponemos un modelo variacional de campo de fase basado en el modelo extendido de Cahn-Hilliard. Los modelos de campo de fase existentes para la fractura anisótropa fueron formulados en un contexto que sólo admite anisotropía débil. En este trabajo, implementamos numéricamente nuestro modelo de campo de fase de alto orden con aproximantes locales de máxima entropía en un método directo de Garlerkin. Los resultados numéricos muestran todas las características de fractura con anisotropía fuerte, y reproducen llamativamente bien las últimas observaciones experimentales. Para explorar el rasgado de láminas delgadas, desarrollamos un modelo geométricamente exacto y un esquema computacional que acopla elasticidad (estiramiento y flexión), fractura, y la adhesión a un substrato. Implementamos numéricamente el modelo con elementos finitos basados en superficies de subdivisión. Nuestras simulaciones reproducen los patrones de ruptura, tanto cualitativamente como cuantitativamente, observados en los experimentos de rasgado. Finalmente, examinamos cómo la geometría de la lámina afecta la fractura. Como ha sido sugerido en resultados previos y en nuestras propias simulaciones de campo de fase, la forma de la lámina afecta dramáticamente la evolución de fisuras y la resistencia efectiva del material. Para comprender mejor estos fenómenos y con el objetivo de desarrollar nuevos conceptos para la optimización del diseño de estructuras de láminas delgadas, derivamos la fuerza configuracional conjugada a la extensión de la fractura para la teoría lineal de láminas delgadas de Koiter. Identificamos las contribuciones conservativas a esta fuerza a través del tensor de Eshelby, así como las contriuciones no conservativas que aparecen por el efecto de la curvatura.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie