Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Anisotropic energy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Anisotropic energy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Anisotropic energy"
Zhang, Chao, Xiangzhuang Kong, Xian Wang, Yanxia Du und Guangming Xiao. „A Predicting Model for the Effective Thermal Conductivity of Anisotropic Open-Cell Foam“. Energies 15, Nr. 16 (22.08.2022): 6091. http://dx.doi.org/10.3390/en15166091.
Der volle Inhalt der QuelleJanhunen, P., A. Olsson, H. Laakso und A. Vaivads. „Middle-energy electron anisotropies in the auroral region“. Annales Geophysicae 22, Nr. 1 (01.01.2004): 237–49. http://dx.doi.org/10.5194/angeo-22-237-2004.
Der volle Inhalt der QuelleSong, Honghua, Yixin Zhao, Yaodong Jiang und Jiehao Wang. „Scale Effect on the Anisotropy of Acoustic Emission in Coal“. Shock and Vibration 2018 (18.12.2018): 1–11. http://dx.doi.org/10.1155/2018/8386428.
Der volle Inhalt der QuelleShaaban, S. M., und M. Lazar. „Whistler instabilities from the interplay of electron anisotropies in space plasmas: a quasi-linear approach“. Monthly Notices of the Royal Astronomical Society 492, Nr. 3 (28.12.2019): 3529–39. http://dx.doi.org/10.1093/mnras/stz3569.
Der volle Inhalt der QuelleRocha, Daniel, Nicolay Tanushev und Paul Sava. „Anisotropic elastic wavefield imaging using the energy norm“. GEOPHYSICS 82, Nr. 3 (01.05.2017): S225—S234. http://dx.doi.org/10.1190/geo2016-0424.1.
Der volle Inhalt der QuelleMishra, B., und S. K. Tripathy. „Anisotropic dark energy model with a hybrid scale factor“. Modern Physics Letters A 30, Nr. 36 (03.11.2015): 1550175. http://dx.doi.org/10.1142/s0217732315501758.
Der volle Inhalt der QuelleMAK, M. K., PETER N. DOBSON und T. HARKO. „EXACT MODELS FOR ANISOTROPIC RELATIVISTIC STARS“. International Journal of Modern Physics D 11, Nr. 02 (Februar 2002): 207–21. http://dx.doi.org/10.1142/s0218271802001317.
Der volle Inhalt der QuelleMOHAPATRA, RANJITA K., P. S. SAUMIA und AJIT M. SRIVASTAVA. „ANALYZING FLOW ANISOTROPIES WITH EXCURSION SETS IN RELATIVISTIC HEAVY-ION COLLISIONS“. Modern Physics Letters A 27, Nr. 29 (17.09.2012): 1250168. http://dx.doi.org/10.1142/s0217732312501684.
Der volle Inhalt der QuelleHossienkhani, H., V. Fayaz und A. Jafari. „Energy conditions and modified gravity in anisotropic universe“. Canadian Journal of Physics 96, Nr. 2 (Februar 2018): 225–32. http://dx.doi.org/10.1139/cjp-2017-0375.
Der volle Inhalt der QuelleBurlakov, Victor M., und Alain Goriely. „Ligand-Assisted Growth of Nanowires from Solution“. Applied Sciences 11, Nr. 16 (20.08.2021): 7641. http://dx.doi.org/10.3390/app11167641.
Der volle Inhalt der QuelleDissertationen zum Thema "Anisotropic energy"
Strümpfer, Johan. „Computing free energy hypersurfaces for anisotropic intermolecular associations“. Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/6290.
Der volle Inhalt der QuelleIncludes bibliographical references.
Adaptive reaction coordinate force biaisng methods have been previously used for calculating the free energy of conformation and chemical reactions amongst others. Here a generalized method is described that is able to produce free energies in multiple dimension, descriptively named the free energies from adaptive reaction coordinate forces (FEARCF) method. To illustrate it a multidemensional intermolecular orientational free energy surface is calculated, and it is demonstrated how to invesrigate complex systems such as protein conformation and liquids.
Steiner, Pinckney Alston IV. „Anisotropic low-energy electron-enhanced etching of semiconductors in DC plasma“. Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/27060.
Der volle Inhalt der QuelleCai, Renye. „Original strain energy density functions for modeling of anisotropic soft biological tissue“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA003/document.
Der volle Inhalt der QuelleThis thesis has focused on the construction of strain energy densities for describing the non-linear behavior of anisotropic materials such as biological soft tissues (ligaments, tendons, arterial walls, etc.) or fiber-reinforced rubbers. The densities we have proposed have been developed with the mathematical theory of invariant polynomials, particularly the Noether theorem and the Reynolds operator. Our work involved two types of anisotropic materials, the first with a single fiber family and the second with a four-fiber family. The concept of polyconvexity has also been studied because it is well known that it plays an important role for ensuring the existence of solutions. In the case of a single fiber family, we have demonstrated that it is impossible for a polynomial density of any degree to predict shear tests with a loading parallel and then perpendicular to the direction of the fibers. A linear polynomial density combined with a power-law function allowed to overcome this problem. In the case of a material made of a four-fiber family, a polynomial density allowed to correctly predict bi-axial tensile test data extracted from the literature. The two proposed densities were implemented in C++ language in the university finite element software FER by adopting a total Lagrangian formulation. This implementation has been validated by comparisons with reference analytical solutions exhibited in the case of simple loads leading to homogeneous deformations. More complex three-dimensional examples, involving non-homogeneous deformations, have also been studied
Fogli, Simone. „Forecasts on the dark energy anisotropic stress for the esa euclid survey“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5614/.
Der volle Inhalt der QuelleXu, Hao. „Theoretical and numerical modeling of anisotropic damage in rock for energy geomechanics“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53035.
Der volle Inhalt der QuelleHamad, Wadwood Y. „Energy-balance equations for in-roll stresses for anisotropic materials in wound rolls“. Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60599.
Der volle Inhalt der QuelleThe approach undertaken herein is purely theoretical and encompasses the rigorous analysis of principally two models; linear isotropic and anisotropic. As for the former, both planar and axisymmetric geometries are investigated; and in the case of the anisotropic model, an axisymmetric plane stress situation is studied. Moreover, finite-element modelling and analysis for the isotropic condition is carried out to confirm the theoretical findings. The objective is then to apply the results; namely, the inclusion of Poisson's ratio and elasticity modulus of the core material, to modify existing energy-balance roll structure formulae. This undertaking is called for if the aim is to have a valid winding model that simulates the actual winding process; i.e., one which incorporates sensing the presence of the core through layers of wound material. Results are further compared with existing winding models and conclusions are given.
Pröchtel, Patrick. „Anisotrope Schädigungsmodellierung von Beton mit adaptiver bruchenergetischer Regularisierung Anisotropic damage modeling of concrete regularized by means of the adaptive fracture energy approach /“. [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1224751435667-29771.
Der volle Inhalt der QuelleGamieldien, Mogamat Riedaa. „Parameterization of the Gay-Berne coarse-grained potential from atomistically detailed anisotropic free energy volumes“. Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10567.
Der volle Inhalt der QuelleSimulating a system of 300,000+ atoms, such as an explicitly solvated protein using all atom molecular dynamics on the microsecond time-scale, would require an enormous amount of computing power and specialized software, even with which would still require months of computing time. However, if the atomic degrees of freedom of the system can be reduced (or averaged) in some physically intuitive manner, while still retaining a connection with the underlying atomistic detail, microsecond simulations could be achieved within weeks or days. Coarse-graining, a sub-class of mesoscale modelling, is used to represent molecules in a reduced form as either regular spheroids (ellipsoids) or as continuum models, using specialized interaction potentials. The Gay-Berne is a one such coarse-grain potential, which has been particularly successful in that it has been used in modelling of liquid crystals, protein dynamics and lipid membrane and micelle formation...
Stevenson, Kip Patrick. „Anisotropic potential energy surfaces for atmospheric gas : unsaturated hydrocarbon molecule interactions from differential scattering experiments /“. Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/11613.
Der volle Inhalt der QuelleLi, Bin. „The variational approach to brittle fracture in materials with anisotropic surface energy and in thin sheets“. Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/393861.
Der volle Inhalt der QuelleLa mécanica de fractura frágil se ha centrado en materiales tridimensionales con una energía de superficie isotrópica. En esta situación, los diferentes principios para la selección del camino de la fisura son muy similares, o incluso equivalentes. La situación es radicalmente opuesta cuando se considera la propagación de fisuras en medios con energía de superficie anisótropa. Estos materiales son importantes en aplicaciones que involucran materiales cristalinos, polímeros extrudidos, o materiales orgánicos y geológicos. Cuando la anisotropía es fuerte, el fenómeno de la propagación de fisuras es muy rico, con direcciones de propagación prohibidas o complejos patrones de ruptura en dientes de sierra. Por tanto, esta situación plantea cuestiones fundamentales en la mecánica de la fractura, incluyendo los principios de selección de la dirección de propagación de la fractura. Igualmente, el proceso de rasgado de láminas delgadas y frágiles, comunes en la naturaleza, la tecnología y la vida diaria, desafía nuestro entendimiento de la fractura. Dado que el rasgado de estas láminas típicamente involucra grandes no linealidades geométricas, no está claro si los factores de intensidad de esfuerzos son válidos o si, y en tal caso cómo determinan la propagación de fisuras. La interacción entre la geometría, las deformaciones y la curvatura da lugar a comportamientos complejos, lo que restringe las soluciones analíticas aproximadas a ejemplos muy simplificados y a regímenes de parámetros limitados. En ambas situaciones, se han podido interpretar experimentos no triviales con modelos energéticos simples. Sin embargo, no se ha profundizado en modelos generales de fractura en presencia de energía de superficie fuertemente anisótropa o en láminas delgadas, ambas interesantes por su capacidad para explorar nueva física. El mencionado éxito de los modelos energéticos simplificados sugiere que las teorías variacionales de fractura en medios frágiles pueden proveer un marco unificador para considerar situaciones más generales, como las que se consideran en este trabajo. Para caracterizar la fractura en materiales con energía de superficie fuertemente anisótropa, proponemos un modelo variacional de campo de fase basado en el modelo extendido de Cahn-Hilliard. Los modelos de campo de fase existentes para la fractura anisótropa fueron formulados en un contexto que sólo admite anisotropía débil. En este trabajo, implementamos numéricamente nuestro modelo de campo de fase de alto orden con aproximantes locales de máxima entropía en un método directo de Garlerkin. Los resultados numéricos muestran todas las características de fractura con anisotropía fuerte, y reproducen llamativamente bien las últimas observaciones experimentales. Para explorar el rasgado de láminas delgadas, desarrollamos un modelo geométricamente exacto y un esquema computacional que acopla elasticidad (estiramiento y flexión), fractura, y la adhesión a un substrato. Implementamos numéricamente el modelo con elementos finitos basados en superficies de subdivisión. Nuestras simulaciones reproducen los patrones de ruptura, tanto cualitativamente como cuantitativamente, observados en los experimentos de rasgado. Finalmente, examinamos cómo la geometría de la lámina afecta la fractura. Como ha sido sugerido en resultados previos y en nuestras propias simulaciones de campo de fase, la forma de la lámina afecta dramáticamente la evolución de fisuras y la resistencia efectiva del material. Para comprender mejor estos fenómenos y con el objetivo de desarrollar nuevos conceptos para la optimización del diseño de estructuras de láminas delgadas, derivamos la fuerza configuracional conjugada a la extensión de la fractura para la teoría lineal de láminas delgadas de Koiter. Identificamos las contribuciones conservativas a esta fuerza a través del tensor de Eshelby, así como las contriuciones no conservativas que aparecen por el efecto de la curvatura.
Bücher zum Thema "Anisotropic energy"
J, Eggleston J., Voorhees P. W und National Institute of Standards and Technology (U.S.), Hrsg. A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.
Den vollen Inhalt der Quelle findenJ, Eggleston J., Voorhees P. W und National Institute of Standards and Technology (U.S.), Hrsg. A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.
Den vollen Inhalt der Quelle findenJ, Eggleston J., Voorhees P. W. 1955- und National Institute of Standards and Technology (U.S.), Hrsg. A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.
Den vollen Inhalt der Quelle findenJ, Eggleston J., Voorhees P. W. 1955- und National Institute of Standards and Technology (U.S.), Hrsg. A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.
Den vollen Inhalt der Quelle findenB, McFadden Geoffrey, und National Institute of Standards and Technology (U.S.), Hrsg. The effect of anisotropic surface energy on the Rayleigh instability. [Gaithersburg, Md.]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2002.
Den vollen Inhalt der Quelle findenB, McFadden Geoffrey, und National Institute of Standards and Technology (U.S.), Hrsg. The effect of anisotropic surface energy on the Rayleigh instability. [Gaithersburg, Md.]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2002.
Den vollen Inhalt der Quelle findenK, Yeung P., Brasseur James G und Institute for Computer Applications in Science and Engineering., Hrsg. Scale disparity and spectral transfer in anisotropic numerical turbulence. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenH, Tipping R., und United States. National Aeronautics and Space Administration., Hrsg. Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials. [Washington, D.C: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenHybrid anisotropic materials for wind power turbine blades. Boca Raton, Fla: CRC Press, 2012.
Den vollen Inhalt der Quelle findenM, Arnold Steven, und United States. National Aeronautics and Space Administration., Hrsg. Driving force analysis in an infinite anisotropic plate with multiple crack interactions. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Anisotropic energy"
Zhang, Pengfei, und Sheng Dai. „Mesoporous Carbon for Energy“. In Anisotropic Nanomaterials, 425–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_11.
Der volle Inhalt der QuelleChopra, Harsh Deep, Jason N. Armstrong und Susan Z. Hua. „Anisotropic Curie Temperature Materials (Plenary)“. In Energy Technology 2013, 177–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118658352.ch20.
Der volle Inhalt der QuelleKun, Yang, Huo Chunyong, Ji Lingkang, Li Yang, Zhang Jiming und Ma Qiurong. „Characterization of Anisotropic Behavior for High Grade Pipes“. In Energy Materials 2014, 759–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48765-6_93.
Der volle Inhalt der QuelleKun, Yang, Huo Chunyong, Ji Lingkang, Li Yang, Zhang Jiming und Ma Qiurong. „Characterization of Anisotropic Behavior for High Grade Pipes“. In Energy Materials 2014, 759–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119027973.ch93.
Der volle Inhalt der QuellePipkin, A. C. „Relaxed Energy Densities for Anisotropic Membranes“. In Solid Mechanics and Its Applications, 333–38. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8494-4_45.
Der volle Inhalt der QuelleTauchert, Theodore R. „Energy Method, Anisotropic and Heterogeneous Plates“. In Encyclopedia of Thermal Stresses, 1279–83. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_163.
Der volle Inhalt der QuelleDeb, Debabrata, Sourav Roy Chowdhury, Saibal Ray, Farook Rahaman und B. K. Guha. „A Model for Anisotropic Strange Stars“. In XXII DAE High Energy Physics Symposium, 65–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_13.
Der volle Inhalt der QuelleChen, Yi-Heng. „Macrocrack Microcrack Interaction in Dissimilar Anisotropic Materials“. In Advances in Conservation Laws and Energy Release Rates, 171–202. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9908-5_5.
Der volle Inhalt der QuelleDegond, P., M. Lemou und J. L. Lòpez. „Fluids with Multivalued Internal Energy: The Anisotropic Case“. In Transport in Transition Regimes, 121–36. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4613-0017-5_7.
Der volle Inhalt der QuelleSmith, G. F., und R. S. Rivlin. „The Strain-Energy Function for Anisotropic Elastic Materials“. In Collected Papers of R.S. Rivlin, 541–59. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2416-7_36.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Anisotropic energy"
Snellings, Raimond. „Energy dependence of anisotropic flow“. In Critical Point and Onset of Deconfinement. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.029.0028.
Der volle Inhalt der QuelleZeng, Jie, Jianchun Guo, Junchen Liu, Tao Zhang, Zhihong Zhao, Jishan Liu und Zhongwei Chen. „A Strain-Driven Model for Anisotropic Permeability Evolution of Shale and Coal Incorporating Creep Deformation, Anisotropic Internal Swelling/Shrinkage, and Gas Rarefaction Effects“. In SPE Conference at Oman Petroleum & Energy Show. SPE, 2024. http://dx.doi.org/10.2118/218594-ms.
Der volle Inhalt der QuelleDASSIOS, G., und K. S. KARADIMA. „THE ENERGY FUNCTIONALS FOR ANISOTROPIC SCATTERING“. In Proceedings of the Seventh International Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773197_0004.
Der volle Inhalt der QuelleVerbunt, Paul P. P. C., Carlos Sánchez-Somolinos, Dirk J. Broer und Michael G. Debije. „Anisotropic light emissions in luminescent solar concentrators“. In Optics for Solar Energy. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ose.2012.st2a.7.
Der volle Inhalt der QuelleGao, Q., J. L. Tao, J. Y. Hu und X. Yu. „Mechanical Behaviors of an Anisotropic Shale Rock“. In Shale Energy Engineering Conference 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413654.017.
Der volle Inhalt der QuelleYu, X. „Field Borehole Testing of Anisotropic Shale Rock“. In Shale Energy Engineering Conference 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413654.033.
Der volle Inhalt der QuelleLiu, Qiang, Zhenchun Li, Min Zhang, Kai Zhang und Xuecheng Xu. „Dynamically focused beam migration in anisotropic media“. In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3579781.1.
Der volle Inhalt der QuelleChen, Yao, und Chen Xiangguo. „Numerical modelling energy reflection in stratified anisotropic media“. In SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999. http://dx.doi.org/10.1190/1.1820917.
Der volle Inhalt der QuelleWendt, S. „Energy dispersive measurements of anisotropic diffraction mottling effects“. In The 27th annual review of progress in quantitative nondestructive evaluation. AIP, 2001. http://dx.doi.org/10.1063/1.1373802.
Der volle Inhalt der QuelleLin, Yuqing, Yuzhen Niu, Shuai Zhang und Junhao Chen. „Anisotropic energy accumulation for stereoscopic image seam carving“. In 2017 International Conference on 3D Immersion (IC3D). IEEE, 2017. http://dx.doi.org/10.1109/ic3d.2017.8251899.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Anisotropic energy"
McFadden, G. B., J. J. Eggleston und P. W. Voorhees. A phase-field model for high anisotropic interfacial energy. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6706.
Der volle Inhalt der QuelleMehrabadi, M. M., S. C. Cowin und C. O. Horgan. Strain Energy Density Bounds for Linear Anisotropic Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada271050.
Der volle Inhalt der QuelleGurski, K. F., und G. B. McFadden. The effect of anisotropic surface energy on the Rayleigh instability. Gaithersburg, MD: National Institute of Standards and Technology, 2002. http://dx.doi.org/10.6028/nist.ir.6892.
Der volle Inhalt der QuelleMunday, Lynn B., und Jaroslaw Knap. Anisotropic Dislocation Line Energy and Crack Tip Dislocation Nucleation in (alpha)RDX. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada592063.
Der volle Inhalt der QuelleBiswas, Kaushik, Som S. Shrestha, Diana E. Hun und Jerald Atchley. Experimental and numerical evaluations of the energy savings potential of thermally anisotropic composites. Office of Scientific and Technical Information (OSTI), Mai 2019. http://dx.doi.org/10.2172/1515652.
Der volle Inhalt der QuelleHart, Carl, und Gregory Lyons. A tutorial on the rapid distortion theory model for unidirectional, plane shearing of homogeneous turbulence. Engineer Research and Development Center (U.S.), Juli 2022. http://dx.doi.org/10.21079/11681/44766.
Der volle Inhalt der QuelleHunt, A. G. Hydraulic Conductivity Distributions for Anisotropic Systems and Application to Tc Transport at the U.S. Department of Energy Hanford Site. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/862059.
Der volle Inhalt der QuelleHunt, Allen G. Applying distributions of hydraulic conductivity for anisotropic systems and applications to Tc Transport at the U.S. Department of Energy Hanford Site. Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/929303.
Der volle Inhalt der QuelleAberg, Daniel, Babak Sadigh und Lorin X. Benedict. On the Site-Decomposition of Magnetocrystalline Anisotropy Energy Using Ome-Electron Eigenstates. Office of Scientific and Technical Information (OSTI), Oktober 2015. http://dx.doi.org/10.2172/1239183.
Der volle Inhalt der QuelleEdward A. Startsev und Ronald C. Davidson. Electromagnetic Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/820112.
Der volle Inhalt der Quelle