Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Animal model of infection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Animal model of infection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Animal model of infection"
Zak, O., und T. O'Reilly. „Animal infection models and ethics--the perfect infection model“. Journal of Antimicrobial Chemotherapy 31, suppl D (01.01.1993): 193–205. http://dx.doi.org/10.1093/jac/31.suppl_d.193.
Der volle Inhalt der QuelleHan, Mingyuan, Charu Rajput, Tomoko Ishikawa, Caitlin Jarman, Julie Lee und Marc Hershenson. „Small Animal Models of Respiratory Viral Infection Related to Asthma“. Viruses 10, Nr. 12 (01.12.2018): 682. http://dx.doi.org/10.3390/v10120682.
Der volle Inhalt der QuelleGlupczynski, Y., und A. Burette. „Animal model of Helicobacter pylori infection.“ Antimicrobial Agents and Chemotherapy 34, Nr. 7 (01.07.1990): 1462. http://dx.doi.org/10.1128/aac.34.7.1462.
Der volle Inhalt der QuelleJanitschke, Klaus, A. Julio Martinez, Govinda S. Visvesvara und Frederick Schuster. „Animal Model Balamuthia Mandrillaris CNS Infection“. Journal of Neuropathology and Experimental Neurology 55, Nr. 7 (Juli 1996): 815–21. http://dx.doi.org/10.1097/00005072-199607000-00006.
Der volle Inhalt der QuelleHaenle, Maximilian, Carmen Zietz, Tobias Lindner, Kathleen Arndt, Anika Vetter, Wolfram Mittelmeier, Andreas Podbielski und Rainer Bader. „A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats“. Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/481975.
Der volle Inhalt der QuelleIyer, Rajiv R., Noah Gorelick, Karen Carroll, Ari M. Blitz, Sarah Beck, Caroline M. Garrett, Audrey Monroe et al. „Evaluation of an in vivo model for ventricular shunt infection: a pilot study using a novel antimicrobial-loaded polymer“. Journal of Neurosurgery 131, Nr. 2 (August 2019): 587–95. http://dx.doi.org/10.3171/2018.1.jns172523.
Der volle Inhalt der QuelleKenney, Scott P., und Xiang-Jin Meng. „Hepatitis E Virus: Animal Models and Zoonosis“. Annual Review of Animal Biosciences 7, Nr. 1 (15.02.2019): 427–48. http://dx.doi.org/10.1146/annurev-animal-020518-115117.
Der volle Inhalt der QuelleShimamura, Tsuyoshi, Nobuo Kubota und Kazutoshi Shibuya. „Animal Model of Dermatophytosis“. Journal of Biomedicine and Biotechnology 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/125384.
Der volle Inhalt der QuelleGroseth, Allison, Don Gardner, Kimberly Meade-White, Susanne Amler und Hideki Ebihara. „Immunocompetent hamsters as a model for orthobunyavirus-induced neuroinvasion and neuropathology“. PLOS Neglected Tropical Diseases 17, Nr. 5 (26.05.2023): e0011355. http://dx.doi.org/10.1371/journal.pntd.0011355.
Der volle Inhalt der QuelleTSUKIYAMA-KOHARA, Kyoko, und Michinori KOHARA. „Animal model for hepatitis C virus infection“. Uirusu 65, Nr. 2 (2015): 255–62. http://dx.doi.org/10.2222/jsv.65.255.
Der volle Inhalt der QuelleDissertationen zum Thema "Animal model of infection"
Maglennon, G. A. „Study of papillomavirus latent infection in an animal model“. Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1306763/.
Der volle Inhalt der QuelleWen, Li. „Immune responses to vaginal viral infection in a mouse model“. Thesis, The University of Sydney, 1998. https://hdl.handle.net/2123/27666.
Der volle Inhalt der QuelleShrief, Raghdaa. „Surrogate Markers of Infection Suitable for Monitoring Infectious Burden in Animal Models of Aspergillosis“. Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525921.
Der volle Inhalt der QuelleShanmuganathan, Subathra Devi. „The woodchuck as an animal model for the study of the immune response in hepadna virus infection“. Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298130.
Der volle Inhalt der QuelleCARRARO, MONICA. „Identification of infection biomarkers in a murine model of pneumonia by Streptococcus pneumoniae“. Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1037742.
Der volle Inhalt der QuelleShen, Hong. „Hepatitis C infection models“. Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T016.
Der volle Inhalt der QuelleHepatitis C virus (HCV) is one of the major causes of liver disease all over the world which has a high risk to progress to cirrhosis and hepatocellular carcinoma. Currently, the licensed standard treatment of HCV infection is Pegylated-interferon (peg-IFN) and ribavirin. Although the sustained viral response (SVR) rate of treatment has improved during these years, this therapy is not effective in all patients. In addition, several toxic side effects, complication and high cost limit the patient compliance and the efficacy of the treatment. There is no easy model of HCV infection and it is necessary to develop useful in vitro and in vivo models to study the pathobiology of HCV infection, including early events of acute infection (viral entry, immunological mechanisms, and genetic predictors) as well as the evaluation of the potency of the HCV antiviral drugs. We report here in our efforts in developing suitable models of HCV infection. In a first step, we preliminary established a small animal model to study HCV infection. Tupaia is a small, closed related to primate and cost-effective animal. In our work, we investigated the susceptibly of tupaia to HCV infection. Twelve adult tupaias were inoculated with native HCV from patient serum and full-length HCV RNA (Genotype 1a). Three young tupaias were artificially breeded for a month and then inoculated by native HCV from patient serum. HCV RNA, anti-HCV and HCV quasi species evolution were determined in the animal before and after inoculation. Transient and intermittent infection occurred in two among 3 young tupaias and HCV chronic infection occurred in four among 12 adult tupaias. Tupaia should represent a useful model for study HCV chronic infection. In a second step, an in vitro culture system of primary tupaia hepatocytes has been established in which HCV infection could be blocked neither by the soluble CD81 nor by antibodies against CD81. To understand these results, we cloned, sequenced the large extracellular loop (LEL) of tupaia CD81 and analyzed the interaction of HCV E2 with the tupaia CD81 LEL by enzyme-linked immunosorbent assay (EIA). We found that in the tupaia the amino acids sequence of HCV CD81 LEL presented in 6 different amino acid residues compared with human CD81 LEL sequence and the CD81 LEL ability to bind to HCV E2 was also decreased. The different structure of CD81 between human and tupaia could explain the alteration of the interaction between HCV E2 and CD81. This result demonstrated an important role of CD81 LEL for HCV entry. In a third step, we developed an ex vivo model of human liver slices culture and their infection with HCV. The development of human cultured HCV-replication-permissive hepatocarcinoma cell lines has provided important new virological tools to study the mechanisms of HCV infection; however this experimental model remains distantly related to physiological and pathological conditions. Here, we report the development of a new ex vivo model using human adult liver slices culture, demonstrating, for the first time, the ability of primary isolates to undergo de novo viral replication with the production of high titer infectious virus, as well as JFH-1, H77/C3, Con1/C3 (HCVcc). This experimental model was validated by demonstrating the HCV neutralization or HCV inhibition, in a dose-dependent manner, either by CD81 or E2 specific antibodies or convalescent serum from a recovered HCV patient, or by anti-viral drugs. This new ex vivo model represents a powerful tool for studying the viral life cycle, dynamics of virus spread in the liver and also for evaluating the efficacy of the new antiviral drugs. In the last step, we evaluated the efficacy of the new antiviral drugs with our ex vivo model of human adult liver slices. HCV NS3/4A protease is essential for viral replication and has been one of the most important target for developing specific antiviral drug
Furr, Patricia Mary. „The development and value of animal models of mycoplasmal infection“. Thesis, Open University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358598.
Der volle Inhalt der QuellePeterson, Christopher. „Evaluation of Therapeutics for an Enterovirus 71 Infection in an AG129 Mouse Model“. DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7278.
Der volle Inhalt der QuelleXi, Jin [Verfasser], und Thomas [Akademischer Betreuer] Iftner. „An Out-bred Animal Model of Cottontail Rabbit Papillomavirus Latent Infection / Jin Xi ; Betreuer: Thomas Iftner“. Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1197610812/34.
Der volle Inhalt der QuelleClasper, Jonathan Charles. „Secondary intramedullary nailing of the tibia in an animal model of an external fixator pin track infection“. Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268414.
Der volle Inhalt der QuelleBücher zum Thema "Animal model of infection"
Axel, Schmidt, und Weber Olaf F, Hrsg. Animal testing in infectiology. Basel: Karger, 2001.
Den vollen Inhalt der Quelle findenAnn, Salzman Lois, Hrsg. Animal models of retrovirus infection and their relationship to AIDS. Orlando: Academic Press, 1986.
Den vollen Inhalt der Quelle findenJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates: Infection, disease & animal model studies : a bibliography, 1988-1989 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1989.
Den vollen Inhalt der Quelle findenJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates: Infection, disease & animal model studies : a bibliography, 1989-1990 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, c1990., 1990.
Den vollen Inhalt der Quelle findenJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates: Infection, disease & animal model studies : a bibliography, 1988-1989 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1989.
Den vollen Inhalt der Quelle findenAnn, Salzman Lois, Hrsg. Animalmodels of retrovirus infection and their relationship to AIDS. Orlando: Academic Press, 1986.
Den vollen Inhalt der Quelle findenR, Swearengen James, Hrsg. Biodefense: Research methodology and animal models. Boca Raton, Fla: Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates: Infection, disease and animal model studies : a bibliography, 1991-1992 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1993.
Den vollen Inhalt der Quelle findenJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates: Infection, disease and animal model studies : a bibliography, 1992-1993 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1994.
Den vollen Inhalt der Quelle findenJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates: Infection, disease and animal model studies : a bibliography, 1990-1991 annual update. Seattle: Primate Information Center, Regional Primate Research Center, University of Washington, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Animal model of infection"
Sharma, Karun, Babita Shashni, Meena K. Sakharkar, Kishore R. Sakharkar und Ramesh Chandra. „Animal Model of Cancer and Infection“. In Post-genomic Approaches in Cancer and Nano Medicine, 85–100. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339083-4.
Der volle Inhalt der QuelleCalabro, Lorenzo, Cameron Lutton, Ahmed Fouad Seif El Din, R. Geoff Richards und T. Fintan Moriarty. „Animal Models of Orthopedic Implant-Related Infection“. In Biomaterials Associated Infection, 273–304. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1031-7_12.
Der volle Inhalt der QuelleLi, Huoming, und Hao Li. „Animal Models of Tuberculosis“. In Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges, 139–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24355-4_7.
Der volle Inhalt der QuelleBergin, Ingrid L., und James G. Fox. „Animal Models of Helicobacter pylori Infection“. In Helicobacter pylori Infection and Immunity, 215–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0681-2_13.
Der volle Inhalt der QuelleLeinonen, M., und P. Saikku. „Animal models for Chlamydia pneumoniae infection“. In Chlamydia pneumoniae and Chronic Diseases, 19–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57195-4_4.
Der volle Inhalt der QuelleLee, Ju Yup. „Animal Models of H. pylori Infection“. In Helicobacter pylori, 537–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-706-2_55.
Der volle Inhalt der QuelleHarvill, Eric T., und Tracy Nicholson. „Animal models“. In Pertussis, 100–111. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198811879.003.0006.
Der volle Inhalt der QuelleGudmundsson, S., und H. Erlendsdóttir. „Murine Thigh Infection Model“. In Handbook of Animal Models of Infection, 137–44. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50154-8.
Der volle Inhalt der QuelleZimmerli, W. „Tissue Cage Infection Model“. In Handbook of Animal Models of Infection, 409–17. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50186-x.
Der volle Inhalt der QuelleMatsumoto, Tetsuro. „Rat Bladder Infection Model“. In Handbook of Animal Models of Infection, 447–51. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50191-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Animal model of infection"
Zulaziz, N., A. Azhim, H. Miyazaki, M. Kinoshita, N. Himeno, D. Saitoh und Y. Morimoto. „A novel animal model for subcutaneous soft tissue infection using temporally neutropenic lys-EGFP mice“. In 2015 10th Asian Control Conference (ASCC). IEEE, 2015. http://dx.doi.org/10.1109/ascc.2015.7244500.
Der volle Inhalt der QuelleLegostaev, S. S., E. V. Protopopova, R. Yu Lutkovsky und V. A. Svyatchenko. „STUDY OF THE EFFECTS OF SARS-COV-2 CO-INFECTION WITH A NON-PATHOGENIC VARIANT OF THE COXSACKIE A7 VIRUS (LEV-8 STRAIN) AND ENTEROVIRUS 71“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-256.
Der volle Inhalt der QuelleTanwar, A., R. Chawla, M. Basu, R. Arora und HA Khan. „FRI0032 Curative effect of camellia sinensis (CS) against opportunistic infection in vulnerable animal model of rheumatoid arthritis“. In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.1057.
Der volle Inhalt der QuelleZhu, Banghe, Caitlin Guenther, Sunkuk Kwon, Eva M. Sevick-Muraca und Junghae Suh. „Using molecular imaging to assess the delivery and infection of protease activated virus in animal model of myocardial infarction“. In SPIE BiOS, herausgegeben von Guillermo J. Tearney, Kenton W. Gregory und Laura Marcu. SPIE, 2017. http://dx.doi.org/10.1117/12.2256760.
Der volle Inhalt der QuelleWillett, Nick J., M. Alice Li, Brent A. Uhrig, Gordon L. Warren und Robert E. Guldberg. „Muscle Injury Attenuates BMP-2 Mediated Tissue Regeneration in a Novel Rat Model of Composite Bone and Muscle Injury“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53589.
Der volle Inhalt der QuelleAltizer, Sonia M. „Monarchs as a model system for studying animal migration and infectious diseases“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.88949.
Der volle Inhalt der QuelleCui, X., W. Xu, D. J. Pepper, J. Sun, J. Welsh und P. Eichacker. „The Effects of Obesity on Outcome in Preclinical Animal Models of Infection and Sepsis: A Systematic Review and Meta-Analysis“. In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1698.
Der volle Inhalt der QuelleNoval, Noval, Ali Rakhman Hakim und Ahmad Irawan. „Antipyretic Effects of (phaleria macrocarpa (scheff) boerl.) Infusa In Mice Galur Wistar As Animal Model“. In 2nd Sari Mulia International Conference on Health and Sciences 2017 (SMICHS 2017) � One Health to Address the Problem of Tropical Infectious Diseases in Indonesia. Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/smichs-17.2017.44.
Der volle Inhalt der QuelleBauer, Carla M., Caleb C. Zavitz, Kristen N. Lambert, Earl G. Brown, Karen L. Mossman und Martin R. Stämpfli. „Treating Viral Exacerbations Of COPD With Steroids: Lessons Learned From Animal Models Of Cigarette Smoke Exposure And Influenza A Virus Infection“. In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1016.
Der volle Inhalt der QuellePadilo, Larisa P., Onega V. Ulianova, Galina Maslyakova, Alla Bucharskaya, Sergey Dobdin, Irina Subbotina, Anatoly Skripal et al. „Can the infection, caused by Chlamydia psittaci, produce the stimulation of the growth of a malignant tumor: studying by using t-LASCA technique on animal model“. In Saratov Fall Meeting 2019: Optical and Nano-Technologies for Biology and Medicine, herausgegeben von Valery V. Tuchin und Elina A. Genina. SPIE, 2020. http://dx.doi.org/10.1117/12.2563841.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Animal model of infection"
Wang, Xinrun, Tianye Li, Xuechai Bai, Yun Zhu und Meiliang Zhang. Therapeutic prospect on umbilical cord mesenchymal stem cells in animal model with primary ovarian insufficiency: A meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Mai 2023. http://dx.doi.org/10.37766/inplasy2023.5.0075.
Der volle Inhalt der QuelleSplitter, Gary A., Menachem Banai und Jerome S. Harms. Brucella second messenger coordinates stages of infection. United States Department of Agriculture, Januar 2011. http://dx.doi.org/10.32747/2011.7699864.bard.
Der volle Inhalt der QuelleShpigel, Nahum, Raul Barletta, Ilan Rosenshine und Marcelo Chaffer. Identification and characterization of Mycobacterium paratuberculosis virulence genes expressed in vivo by negative selection. United States Department of Agriculture, Januar 2004. http://dx.doi.org/10.32747/2004.7696510.bard.
Der volle Inhalt der QuelleFicht, Thomas, Gary Splitter, Menachem Banai und Menachem Davidson. Characterization of B. Melinensis REV 1 Attenuated Mutants. United States Department of Agriculture, Dezember 2000. http://dx.doi.org/10.32747/2000.7580667.bard.
Der volle Inhalt der QuelleYogev, David, Ricardo Rosenbusch, Sharon Levisohn und Eitan Rapoport. Molecular Pathogenesis of Mycoplasma bovis and Mycoplasma agalactiae and its Application in Diagnosis and Control. United States Department of Agriculture, April 2000. http://dx.doi.org/10.32747/2000.7573073.bard.
Der volle Inhalt der QuelleChejanovsky, Nor, und Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, Januar 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Der volle Inhalt der QuelleFarmer, Roger E. A., und Konstantin Platonov. Animal Spirits in a Monetary Model. Cambridge, MA: National Bureau of Economic Research, März 2016. http://dx.doi.org/10.3386/w22136.
Der volle Inhalt der QuelleMellies, Jay L. C. elegans as a Model for EPEC Infection. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada441203.
Der volle Inhalt der QuelleCabrera, Anahi Maldonado, Blayra Maldonado Cabrera, Dalia Isabel Sánchez Machado und Jaime López Cervantes. Wound healing therapeutic effect of chitosan nanofibers: a systematic review and meta- analysis of animal studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Oktober 2022. http://dx.doi.org/10.37766/inplasy2022.10.0121.
Der volle Inhalt der QuelleLi, Jiliang. Healing of Stress Fracture in an Animal Model. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada433113.
Der volle Inhalt der Quelle