Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Anharmonicitées.

Zeitschriftenartikel zum Thema „Anharmonicitées“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Anharmonicitées" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Singh, Hempal, Anu Singh, Vinod Ashokan und B. D. Indu B. D. Indu. „Signature of Anharmonicities in High Temperature Superconductors“. Indian Journal of Applied Research 3, Nr. 4 (01.10.2011): 35–38. http://dx.doi.org/10.15373/2249555x/apr2013/134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wu, Junjun, Lu Gem Gao, Wei Ren und Donald G. Truhlar. „Anharmonic kinetics of the cyclopentane reaction with hydroxyl radical“. Chemical Science 11, Nr. 9 (2020): 2511–23. http://dx.doi.org/10.1039/c9sc05632g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gastegger, Michael, Jörg Behler und Philipp Marquetand. „Machine learning molecular dynamics for the simulation of infrared spectra“. Chemical Science 8, Nr. 10 (2017): 6924–35. http://dx.doi.org/10.1039/c7sc02267k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kolesov, Egor A., Mikhail S. Tivanov, Olga V. Korolik, Olesya O. Kapitanova, Hak Dong Cho, Tae Won Kang und Gennady N. Panin. „Phonon anharmonicities in supported graphene“. Carbon 141 (Januar 2019): 190–97. http://dx.doi.org/10.1016/j.carbon.2018.09.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gupta, Anushri, Sanjeev K. Verma, Anita Kumari und B. D. Indu. „Generalized phonon density of states of La2−xSrxCuO4 cuprate superconductor“. International Journal of Modern Physics B 33, Nr. 28 (10.11.2019): 1950328. http://dx.doi.org/10.1142/s0217979219503284.

Der volle Inhalt der Quelle
Annotation:
Many body quantum dynamics of phonons is steadily developed by considering the various effects of anharmonicities, defects (consider as doping or impurity concentration) and electron–phonon interactions in model Hamiltonian (instead of BCS Hamiltonian) for a high-temperature superconductor (HTS). This enables to obtain the expressions for the renormalized phonon spectrum, the renormalized phonon density of states (RPDOS). The RPDOS can be resolved into diagonal and nondiagonal parts where the nondiagonal component is found highly impurity-dependent. Considering the suitable Born–Mayer–Huggins (BMH) interaction potential, the renormalized phonon spectrum, RPDOS and generalized phonon density of states (GPDOS) of the La[Formula: see text]Sr[Formula: see text]CuO4 layered superconductor have been numerically analyzed and it was found that these quantities depend on doping concentration, anharmonicities, and temperature. The results are compared with the inelastic neutron scattering experimental data of GPDOS for La[Formula: see text]Sr[Formula: see text]CuO4 and are found in good agreement. The ratio of deviation in GPDOS to GPDOS at critical temperature ([Formula: see text] K) shows the implicit difference at [Formula: see text]. The impact of defects, anharmonicities, and electron–phonon interactions in the cuprate superconductors virtually modify the scenario of GPDOS and affirm a large number of exotic peaks in the spectrum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

INDU, B. D. „THEORY OF LATTICE SPECIFIC HEAT OF AN ISOTOPICALLY DISORDERED ANHARMONIC CRYSTAL“. International Journal of Modern Physics B 04, Nr. 07n08 (Juni 1990): 1379–93. http://dx.doi.org/10.1142/s021797929000067x.

Der volle Inhalt der Quelle
Annotation:
Expressions are obtained for the phonon density of states (DOS), lattice energy and lattice heat capacity (LHC) of an isotopically disordered anharmonic crystal. The cubic and quartic anharmonicities are taken into account besides both the force constant changes and mass difference caused by the substitutional impurities. The method of double time thermal Green’s Function (GF) is used in the development. It is shown that in the low concentration limit the LHC depends on mass and force constant changes, cubic and quartic anharmonicities and impurity-anharmonicity interactions. At low temperatures the largest contribution is found due to the defects. It is observed that the non-diagonal terms contribute significantly in the lattice energy of isotopically disordered crystal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fuß, Werner, Evan G. Robertson, Chris Medcraft und Dominique R. T. Appadoo. „Vibrational Anharmonicities and Reactivity of Tetrafluoroethylene“. Journal of Physical Chemistry A 118, Nr. 29 (15.07.2014): 5391–99. http://dx.doi.org/10.1021/jp500811w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Massa, Néstor E., und Vólia Lemos. „Intrinsic anharmonicities in theBX42−orthorhombic sublattice“. Physical Review B 33, Nr. 5 (01.03.1986): 3379–83. http://dx.doi.org/10.1103/physrevb.33.3379.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Piepenbring, R., und M. K. Jammari. „Anharmonicities of γ-vibrations in 168Er“. Nuclear Physics A 481, Nr. 1 (April 1988): 81–93. http://dx.doi.org/10.1016/0375-9474(88)90474-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xiang, Bo, Raphael F. Ribeiro, Adam D. Dunkelberger, Jiaxi Wang, Yingmin Li, Blake S. Simpkins, Jeffrey C. Owrutsky, Joel Yuen-Zhou und Wei Xiong. „Two-dimensional infrared spectroscopy of vibrational polaritons“. Proceedings of the National Academy of Sciences 115, Nr. 19 (19.04.2018): 4845–50. http://dx.doi.org/10.1073/pnas.1722063115.

Der volle Inhalt der Quelle
Annotation:
We report experimental 2D infrared (2D IR) spectra of coherent light–matter excitations––molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light–matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Anda, André, Darius Abramavičius und Thorsten Hansen. „Two-dimensional electronic spectroscopy of anharmonic molecular potentials“. Physical Chemistry Chemical Physics 20, Nr. 3 (2018): 1642–52. http://dx.doi.org/10.1039/c7cp06583c.

Der volle Inhalt der Quelle
Annotation:
Two-dimensional electronic spectroscopy (2DES) is a powerful tool in the study of coupled electron–phonon dynamics, yet very little is known about how nonlinearities in the electron–phonon coupling, arising from anharmonicities in the nuclear potentials, affect the spectra.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Guo, Xiao, Qiwei Tian, Yongsong Wang, Jinxin Liu, Guiping Jia, Weidong Dou, Fei Song, Lijie Zhang, Zhihui Qin und Han Huang. „Phonon anharmonicities in 7-armchair graphene nanoribbons“. Carbon 190 (April 2022): 312–18. http://dx.doi.org/10.1016/j.carbon.2022.01.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Znojil, M. „Singular anharmonicities and the analytic continued fractions“. Journal of Mathematical Physics 30, Nr. 1 (Januar 1989): 23–27. http://dx.doi.org/10.1063/1.528614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Jammari, M. K., und R. Piepenbring. „Anharmonicities of γ-vibrations in deformed nuclei“. Nuclear Physics A 487, Nr. 1 (Oktober 1988): 77–91. http://dx.doi.org/10.1016/0375-9474(88)90130-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Shirai, Koun, und Hiroshi Katayama-Yoshida. „Anharmonicities in optical spectra of α-rhombohedral boron“. Physica B: Condensed Matter 263-264 (März 1999): 791–94. http://dx.doi.org/10.1016/s0921-4526(98)01288-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Znojil, Miloslav. „Pairs of anharmonicities and the double delta expansions“. Physics Letters A 164, Nr. 2 (April 1992): 145–48. http://dx.doi.org/10.1016/0375-9601(92)90693-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Calvo, F., und P. Parneix. „Amplification of Anharmonicities in Multiphoton Vibrational Action Spectra“. ChemPhysChem 13, Nr. 1 (06.12.2011): 212–20. http://dx.doi.org/10.1002/cphc.201100690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hassanzedeh, Parviz, und Karl K. Irikura. „Inexpensive vibrational anharmonicities from estimated derivatives: Diatomic molecules“. Journal of Computational Chemistry 19, Nr. 11 (August 1998): 1315–24. http://dx.doi.org/10.1002/(sici)1096-987x(199808)19:11<1315::aid-jcc11>3.0.co;2-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

PAINULI, C. P., B. P. BAHUGUNA und B. D. INDU. „MICROWAVE ATTENUATION IN ISOTOPICALLY DISORDERED ANHARMONIC CRYSTALS“. International Journal of Modern Physics B 05, Nr. 12 (20.07.1991): 2093–107. http://dx.doi.org/10.1142/s021797929100081x.

Der volle Inhalt der Quelle
Annotation:
The impurity-anharmonicity interactions, along with anharmonicities, mass and force constant changes have been taken into account to investigate the expressions for microwave attenuation in anharmonic crystals. A remarkable change in the phonon frequency shifts and widths has been reported due to the defect anharmonicity interactions. The usual method of central and non-central force constant parameters has been ignored here and parameter free expressions have been reported.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

ATAULLAH ANSARI, M., VINOD ASHOKAN und B. D. INDU. „PHONON HEAT CONDUCTIVITY OF InSb AND CdS“. International Journal of Modern Physics B 25, Nr. 10 (20.04.2011): 1409–18. http://dx.doi.org/10.1142/s0217979211058778.

Der volle Inhalt der Quelle
Annotation:
The lattice thermal conductivity of InSb and CdS has been analyzed on the basis of the most acquiescent Callaway model in the temperature range 2–300.779 K and 2.296–283.565 K. To reinvigorate the effects of phonon anharmonicities, more rigorous expressions for the phonon–phonon interactions, resonance, impurity and interference scattering relaxation times have been introduced to theoretically justify the experimentally observed results. A fairly good agreement between theory and experiments has been presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Abada, A., und D. Vautherin. „Anharmonicities of nuclear vibrations from periodic mean-field orbits“. Physical Review C 45, Nr. 5 (01.05.1992): 2205–16. http://dx.doi.org/10.1103/physrevc.45.2205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Srivastava, Sunita, und Vishwamittar. „Energies of oscillators with mixed quartic and sextic anharmonicities“. Molecular Physics 72, Nr. 6 (20.04.1991): 1285–97. http://dx.doi.org/10.1080/00268979100100911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Durand, J. C., und R. Piepenbring. „Anharmonicities of γ vibrations in odd-mass deformed nuclei“. Physical Review C 54, Nr. 1 (01.07.1996): 189–200. http://dx.doi.org/10.1103/physrevc.54.189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Golonzka, O., M. Khalil, N. Demirdöven und A. Tokmakoff. „Vibrational Anharmonicities Revealed by Coherent Two-Dimensional Infrared Spectroscopy“. Physical Review Letters 86, Nr. 10 (05.03.2001): 2154–57. http://dx.doi.org/10.1103/physrevlett.86.2154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Pathak, Anirban, und Swapan Mandal. „Classical and quantum oscillators of sextic and octic anharmonicities“. Physics Letters A 298, Nr. 4 (Juni 2002): 259–70. http://dx.doi.org/10.1016/s0375-9601(02)00500-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

SCHOMMERS, W., P. VON BLANCKENHAGEN und C. SYROS. „PHONONS AND NON-LINEAR DYNAMIC EXCITATIONS AT THE SURFACE OF SOLIDS“. Modern Physics Letters B 06, Nr. 01 (10.01.1992): 23–32. http://dx.doi.org/10.1142/s0217984992000053.

Der volle Inhalt der Quelle
Annotation:
In this paper we report molecular dynamics (MD) results for the surface dynamics of realistic model systems (krypton, lead). It turned out that the layers at the surface perform an unusual center-of-mass motion perpendicular to the surface; this new excitation should be due to the anharmonicities at the surface. The generalized phonon density of states has been studied in the bulk as well as at the surface of the crystal. The MD results are discussed in connection with dynamical-matrix solutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Mix, Hartmut, Joachim Sauer, Klaus-Peter Schröder und Angela Merkel. „Vibrational properties of surface hydroxyls: Nonempirical model calculations including anharmonicities“. Collection of Czechoslovak Chemical Communications 53, Nr. 10 (1988): 2191–202. http://dx.doi.org/10.1135/cccc19882191.

Der volle Inhalt der Quelle
Annotation:
Complete sets of harmonic, semidiagonal cubic as well as diagonal cubic and quartic force constants are reported for the internal coordinates of terminal, ≣SiOH, and bridging, ≣SiOH·Al≣, surface hydroxyls on silica and zeolites. They are obtained by numerical differentiation of analytically calculated gradients of the energy (SCF approximation, 6-31 G* basis set). A GF vibrational analysis is performed and after making a nonlinear transformation of the force constants into normal coordinates the anharmonicity constants are evaluated by perturbation theory. Comparison is made with the D2OH+ ion and the DOH molecule. The calculated anharmonicities of the OH bonds in the systems studied are remarkably constant and vary between -76 and -84 cm-1, only in agreement with the values observed for DOH (-83 cm-1) and surface silanols, ≣SiOH (-90 ± 15 cm-1).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Mrudul, M. S., Siby Thomas und K. M. Ajith. „Anharmonicities in the temperature-dependent bending rigidity of BC3 monolayer“. Journal of Physics and Chemistry of Solids 146 (November 2020): 109574. http://dx.doi.org/10.1016/j.jpcs.2020.109574.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Pathak, Anirban, und Swapan Mandal. „Classical and quantum oscillators of quartic anharmonicities: second-order solution“. Physics Letters A 286, Nr. 4 (Juli 2001): 261–76. http://dx.doi.org/10.1016/s0375-9601(01)00401-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Beaudet, Yvon, Laurent J. Lewis und Mats Persson. „Surface anharmonicities and disordering on Ni(100) and Ni(110)“. Physical Review B 50, Nr. 16 (15.10.1994): 12084–103. http://dx.doi.org/10.1103/physrevb.50.12084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sokolov, A. I. „Fluctuations, higher order anharmonicities, and Landau expansion for barium titanate“. Physics of the Solid State 51, Nr. 2 (Februar 2009): 351–55. http://dx.doi.org/10.1134/s1063783409020255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Fuß, Werner, Evan G. Robertson, Chris Medcraft und Dominique R. T. Appadoo. „Correction and Addition to “Vibrational Anharmonicities and Reactivity of Tetrafluoroethylene”“. Journal of Physical Chemistry A 118, Nr. 36 (21.08.2014): 8009–10. http://dx.doi.org/10.1021/jp507985p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Freund, J. „On the determination of interatomic potential anharmonicities from EXAFS measurements“. Physics Letters A 157, Nr. 4-5 (Juli 1991): 256–60. http://dx.doi.org/10.1016/0375-9601(91)90062-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Schriver, Louise, André Schriver, Stefan Peil und Otto Schrems. „Hydrogen-bonded complexes of perfluoro-t-butanol with acetone and nitromethane in low temperature solutions and matrices“. Canadian Journal of Chemistry 69, Nr. 10 (01.10.1991): 1520–27. http://dx.doi.org/10.1139/v91-225.

Der volle Inhalt der Quelle
Annotation:
Infrared spectra are reported for binary complexes between perfluoro-tert-butanol as proton donor and nitromethane and acetone as bases. The complexes have been investigated in low temperature solutions and in cryogenic matrices. The spectra have been evaluated in terms of frequency shifts (ΔVOH), half widths (FWHH) and anharmonicities (κ) caused by the hydrogen bonding of these complexes. The influence of the environment (solvents and solid matrices) as well as temperature on the spectra of the complexes has also been studied and is discussed in detail. Key words: hydrogen bonding, temperature effects, solutions, matrix.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Савотченко, С. Е. „Локализация и трансформация нелинейных возбуждений вблизи границы раздела сред с различными знаками нелинейности“. Журнал технической физики 89, Nr. 2 (2019): 163. http://dx.doi.org/10.21883/jtf.2019.02.47063.2355.

Der volle Inhalt der Quelle
Annotation:
AbstractContact states at the interface of nonlinear media with anharmonicities of different signs are considered. A model that represents a boundary-value problem for the nonlinear Schrödinger equation is proposed. Several types of stationary states that depend on energy and describe local states in the vicinity of the interface, localization of nonlinear waves passing through the interface, and transformation of such waves are obtained for the system under study. Dispersion relations that make it possible to determine the energies of such states are derived. Explicit expressions for the energies of stationary states are obtained in the limiting cases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

INDU, B. D. „ENHANCED PHONON DENSITY OF STATES IN IMPURE ANHARMONIC CRYSTALS“. Modern Physics Letters B 06, Nr. 26 (10.11.1992): 1665–72. http://dx.doi.org/10.1142/s0217984992001368.

Der volle Inhalt der Quelle
Annotation:
The expression for the density of states of an isotopically disordered anharmonic crystal is investigated with the help of double-time thermodynamic Green’s functions. The cubic and quartic anharmonicities are taken into account besides the force constant changes and mass differences caused by the substitutional isotopic impurities. It is found that the density of states can be separated into defect, anharmonic and interference terms. The density of states is considerably enhanced due to the defects and impurities present in a real crystal and shows strong temperature and impurity concentration dependences which cannot be obtained by the traditional harmonic theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Paar, V., und N. Pavin. „Regularity–Partial Chaos–Regularity Transition and Overlapped KAM Scenarios in a Conservative System of Two Linearly Coupled Double-Well Oscillators“. Modern Physics Letters B 17, Nr. 17 (20.07.2003): 941–48. http://dx.doi.org/10.1142/s0217984903006001.

Der volle Inhalt der Quelle
Annotation:
For linearly coupled double-well oscillators the regularity–partial chaos–regularity transition is found. First, an incomplete KAM scenario develops with increasing energy, from integrable pattern comprising in-phase and out-of-phase small elliptic orbits towards a partial chaos, with a deformed regular island immersed in a chaotic sea. At a critical energy a new deformed island appears as a mirror image. Above the critical energy the inverse KAM scenario leads to gradual destruction of partial chaos and to the appearance of large elliptic orbits which correspond to the large-amplitude limit governed by uncoupled oscillators with cubic anharmonicities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lee, Myung Won, Massimo Mella und Andrew M. Rappe. „Electronic quantum Monte Carlo calculations of atomic forces, vibrations, and anharmonicities“. Journal of Chemical Physics 122, Nr. 24 (22.06.2005): 244103. http://dx.doi.org/10.1063/1.1924690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Muñoz-Caro, Camelia, und Alfonso Niño. „Effect of Anharmonicities on the Thermodynamic Properties of the Water Dimer†“. Journal of Physical Chemistry A 101, Nr. 22 (Mai 1997): 4128–35. http://dx.doi.org/10.1021/jp9701348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hunt, K. L. C. „Vibrational force constants and anharmonicities: Relation to polarizability and hyperpolarizability densities“. Journal of Chemical Physics 103, Nr. 9 (September 1995): 3552–60. http://dx.doi.org/10.1063/1.470239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Freeman, G. R., N. H. March und L. von Szentpály. „Universal relation between spectroscopic constants: a chaotic/fractal regime in anharmonicities“. Journal of Molecular Structure: THEOCHEM 394, Nr. 1 (April 1997): 11–13. http://dx.doi.org/10.1016/s0166-1280(96)04879-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Alheit, R., C. Hennig, R. Morgenstern, F. Vedel und G. Werth. „Observation of instabilities in a Paul trap with higher-order anharmonicities“. Applied Physics B Lasers and Optics 61, Nr. 3 (September 1995): 277–83. http://dx.doi.org/10.1007/bf01082047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Gu, Yingying, und Dmitri Babikov. „On the role of vibrational anharmonicities in a two-qubit system“. Journal of Chemical Physics 131, Nr. 3 (21.07.2009): 034306. http://dx.doi.org/10.1063/1.3152487.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Costard, Rene, Tobias Tyborski und Benjamin P. Fingerhut. „Anharmonicities and coherent vibrational dynamics of phosphate ions in bulk H2O“. Physical Chemistry Chemical Physics 17, Nr. 44 (2015): 29906–17. http://dx.doi.org/10.1039/c5cp04502a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Volpe, C., F. Catara, Ph Chomaz, M. V. Andrés und E. G. Lanza. „Anharmonicities and non-linearities in the excitation of double giant resonances“. Nuclear Physics A 589, Nr. 3 (Juli 1995): 521–34. http://dx.doi.org/10.1016/0375-9474(95)00195-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Bansal, Meena, Sunita Srivastava, Mamta und Vishwamittar. „Energy eigenvalues for double-well oscillators with mixed cubic—quartic anharmonicities“. Chemical Physics Letters 195, Nr. 5-6 (Juli 1992): 505–8. http://dx.doi.org/10.1016/0009-2614(92)85552-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

De Almeida, Wagner B., und Alan Hinchliffe. „Mechanical and electrical anharmonicities in the hydrogen cyanide hydrogen-bonded clusters“. Journal of Molecular Structure: THEOCHEM 204 (Januar 1990): 153–69. http://dx.doi.org/10.1016/0166-1280(90)85070-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Soulayman, S. Sh. „Theoretical Melting Curves of Alkali Halides“. Zeitschrift für Naturforschung A 47, Nr. 6 (01.06.1992): 753–60. http://dx.doi.org/10.1515/zna-1992-0606.

Der volle Inhalt der Quelle
Annotation:
AbstractAn analysis of the melting curves of alkali halides is given. The study is based on the Improved Unsymmetrized Self-Consistent Field Method (IUSCFM) for strongly anharmonic crystals with complex lattice and the energy, entropy and Ross’s criterions in calculating the melting curves of alkali halides. The anharmonicities up to sixth order have been taken into consideration. The energy criterion was proven to be the most correct one along the melting curves of the high pressure modification (CsCl structure) while the entropy and Ross's criterions lead to a little better agreement with experiment than the energy criterion when dealing with rocksalt structure. Calculations of the melting curves of KCl and CsCl are compared with the experimental results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

CHEN, L. Y., und N. J. M. HORING. „STUDY OF LENNARD-JONES CLUSTERS: EFFECTS OF ANHARMONICITIES FAR FROM SADDLE POINTS“. International Journal of High Speed Electronics and Systems 18, Nr. 01 (März 2008): 119–26. http://dx.doi.org/10.1142/s0129156408005199.

Der volle Inhalt der Quelle
Annotation:
We study the transition pathways of a Lennard-Jones cluster of seven particles in three dimensions. Low lying saddle points of the LJ cluster, which can be reached directly from a minimum without passing through another minimum, are identified without any presumption of their characteristics, nor of the product states they lead to. The probabilities are computed for paths going from a given minimum to the surrounding saddle points. These probabilities are directly related to prefactors in the rate formula. This determination of the rate prefactors includes all anharmonicities, near or far from saddle points, which are pertinent in the very sophisticated energy landscape of LJ clusters and in many other complex systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ashokan, Vinod, und B. D. Indu. „Anharmonic phonon–electron effects on phonon density of states in La2−xSrxCuO4“. Modern Physics Letters B 29, Nr. 29 (25.10.2015): 1550177. http://dx.doi.org/10.1142/s0217984915501778.

Der volle Inhalt der Quelle
Annotation:
In the present work, the phonon density of states (PDOS) for [Formula: see text] crystal is investigated by using the double time thermodynamic Green’s function method via a non-perturbative approach. A newly formulated Hamiltonian is considered for the lattice dynamics of phonon, which includes the effects of electron–phonon interactions, lattice anharmonicities and the interacting isotopic impurities. The automated emergence of pairons and [Formula: see text] wave pairing mechanism appears as a salient features of the theory. The PDOS is found to be dependent on temperature, impurity concentration, electron–phonon coupling coefficient and renormalized frequencies, and the numerical investigations on PDOS exhibits fairly good agreements with the inelastic neutron scattering experimental observations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie