Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Analysis of encrypted network flow“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Analysis of encrypted network flow" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Analysis of encrypted network flow"
Yan, Xiaodan. „Deep Learning-Based Efficient Analysis for Encrypted Traffic“. Applied Sciences 13, Nr. 21 (27.10.2023): 11776. http://dx.doi.org/10.3390/app132111776.
Der volle Inhalt der QuelleJiang, Ziyu. „Bidirectional Flow-Based Image Representation Method for Detecting Network Traffic Service Categories“. Highlights in Science, Engineering and Technology 85 (13.03.2024): 89–95. http://dx.doi.org/10.54097/mwyge502.
Der volle Inhalt der QuelleMa, Chencheng, Xuehui Du und Lifeng Cao. „Improved KNN Algorithm for Fine-Grained Classification of Encrypted Network Flow“. Electronics 9, Nr. 2 (13.02.2020): 324. http://dx.doi.org/10.3390/electronics9020324.
Der volle Inhalt der QuelleMeghdouri, Fares, Tanja Zseby und Félix Iglesias. „Analysis of Lightweight Feature Vectors for Attack Detection in Network Traffic“. Applied Sciences 8, Nr. 11 (09.11.2018): 2196. http://dx.doi.org/10.3390/app8112196.
Der volle Inhalt der QuelleAfzal, Asmara, Mehdi Hussain, Shahzad Saleem, M. Khuram Shahzad, Anthony T. S. Ho und Ki-Hyun Jung. „Encrypted Network Traffic Analysis of Secure Instant Messaging Application: A Case Study of Signal Messenger App“. Applied Sciences 11, Nr. 17 (24.08.2021): 7789. http://dx.doi.org/10.3390/app11177789.
Der volle Inhalt der QuelleOh, Chaeyeon, Joonseo Ha und Heejun Roh. „A Survey on TLS-Encrypted Malware Network Traffic Analysis Applicable to Security Operations Centers“. Applied Sciences 12, Nr. 1 (24.12.2021): 155. http://dx.doi.org/10.3390/app12010155.
Der volle Inhalt der QuelleHaywood, Gregor Tamati, und Saleem Noel Bhatti. „Defence against Side-Channel Attacks for Encrypted Network Communication Using Multiple Paths“. Cryptography 8, Nr. 2 (28.05.2024): 22. http://dx.doi.org/10.3390/cryptography8020022.
Der volle Inhalt der QuelleHu, Xinyi, Chunxiang Gu, Yihang Chen und Fushan Wei. „CBD: A Deep-Learning-Based Scheme for Encrypted Traffic Classification with a General Pre-Training Method“. Sensors 21, Nr. 24 (09.12.2021): 8231. http://dx.doi.org/10.3390/s21248231.
Der volle Inhalt der QuelleVizitiu, Anamaria, Cosmin-Ioan Nita, Radu Miron Toev, Tudor Suditu, Constantin Suciu und Lucian Mihai Itu. „Framework for Privacy-Preserving Wearable Health Data Analysis: Proof-of-Concept Study for Atrial Fibrillation Detection“. Applied Sciences 11, Nr. 19 (28.09.2021): 9049. http://dx.doi.org/10.3390/app11199049.
Der volle Inhalt der QuelleChoudhary, Swapna, und Sanjay Dorle. „Secured SDN Based Blockchain: An Architecture to Improve the Security of VANET“. International journal of electrical and computer engineering systems 13, Nr. 2 (28.02.2022): 145–53. http://dx.doi.org/10.32985/ijeces.13.2.7.
Der volle Inhalt der QuelleDissertationen zum Thema "Analysis of encrypted network flow"
Toure, Almamy. „Collection, analysis and harnessing of communication flows for cyber-attack detection“. Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0023.
Der volle Inhalt der QuelleThe increasing complexity of cyberattacks, characterized by a diversification of attack techniques, an expansion of attack surfaces, and growing interconnectivity of applications with the Internet, makes network traffic management in a professional environment imperative. Companies of all types collect and analyze network flows and logs to ensure the security of exchanged data and prevent the compromise of information systems. However, techniques for collecting and processing network traffic data vary from one dataset to another, and static attack detection approaches have limitations in terms of efficiency and precision, execution time, and scalability. This thesis proposes dynamic approaches for detecting cyberattacks related to network traffic, using feature engineering based on the different communication phases of a network flow, coupled with convolutional neural networks (1D-CNN) and their feature detector. This double extraction allows for better classification of network flows, a reduction in the number of attributes and model execution times, and thus effective attack detection. Companies also face constantly evolving cyber threats, and "zero-day" attacks that exploit previously unknown vulnerabilities are becoming increasingly frequent. Detecting these zero-day attacks requires constant technological monitoring and thorough but time-consuming analysis of the exploitation of these vulnerabilities. The proposed solutions guarantee the detection of certain attack techniques. Therefore, we propose a detection framework for these attacks that covers the entire attack chain, from the data collection phase to the identification of any type of zero-day, even in a constantly evolving environment. Finally, given the obsolescence of existing datasets and data generation techniques for intrusion detection, and the fixed, non-evolving, and non-exhaustive nature of recent attack scenarios, the study of an adapted synthetic data generator while ensuring data confidentiality is addressed. The solutions proposed in this thesis optimize the detection of known and zero-day attack techniques on network flows, improve the accuracy of models, while ensuring the confidentiality and high availability of data and models, with particular attention to the applicability of the solutions in a company network
Izadinia, Vafa Dario. „Fingerprinting Encrypted Tunnel Endpoints“. Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/25351.
Der volle Inhalt der QuelleDissertation (MSc (Computer Science))--University of Pretoria, 2005.
Computer Science
unrestricted
Heller, Mark D. „Behavioral analysis of network flow traffic“. Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/5108.
Der volle Inhalt der QuelleNetwork Behavior Analysis (NBA) is a technique to enhance network security by passively monitoring aggregate traffic patterns and noting unusual action or departures from normal operations. The analysis is typically performed offline, due to the huge volume of input data, in contrast to conventional intrusion prevention solutions based on deep packet inspection, signature detection, and real-time blocking. After establishing a benchmark for normal traffic, an NBA program monitors network activity and flags unknown, new, or unusual patterns that might indicate the presence of a potential threat. NBA also monitors and records trends in bandwidth and protocol use. Computer users in the Department of Defense (DoD) operational networks may use Hypertext Transport Protocol (HTTP) to stream video from multimedia sites like youtube.com, myspace.com, mtv.com, and blackplanet.com. Such streaming may hog bandwidth, a grave concern, given that increasing amounts of operational data are exchanged over the Global Information Grid, and introduce malicious viruses inadvertently. This thesis develops an NBA solution to identify and estimate the bandwidth usage of HTTP streaming video traffic entirely from flow records such as Cisco's NetFlow data.
McClenney, Walter O. „Analysis of the DES, LOKI, and IDEA algorithms for use in an encrypted voice PC network“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA297919.
Der volle Inhalt der QuelleKattadige, Chamara Manoj Madarasinghe. „Network and Content Intelligence for 360 Degree Video Streaming Optimization“. Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/29904.
Der volle Inhalt der QuelleDandachi, Najib H. „Network flow method for power system analysis“. Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47398.
Der volle Inhalt der QuelleMartin, Kevin M. „A geographic and functional network flow analysis tool“. Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42679.
Der volle Inhalt der QuelleCritical infrastructure systems, such as water and electricity, are important for society and national defense. There is a need for network analysis tools that allow analysts to study potential scenarios to discover vulnerabilities, assess consequences, and evaluate effective solutions to overcome network weaknesses. In order to be useful, models of critical infrastructure systems need to be realistic, both geospatially and functionally. The objective of this thesis is to bridge the gap between geospatial and functional network analysis by developing a software tool that allows users to create and edit networks in a Graphical Information System (GIS) visual environment, and then also run and view the results of functional network models. Our primary contribution is to provide an easy-to-use, graphical interface in the form of a plugin that allows users, regardless of their network expertise, to create networks and exercise network flow models on them. We demonstrate the usefulness of our plugin through the analysis of a fictional case study with a realistic Internet infrastructure. We run several minimum cost flow models with simulated network attacks to assess the robustness of the network.
Zickel, Michael J. „Using ecosystem network analysis to quantify fluid flow“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2987.
Der volle Inhalt der QuelleThesis research directed by: Marine, Estuarine, Environmental Sciences Graduate Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Herbert, Alan. „Bolvedere: a scalable network flow threat analysis system“. Thesis, Rhodes University, 2019. http://hdl.handle.net/10962/71557.
Der volle Inhalt der QuelleGlockner, Gregory D. „Dynamic network flow with uncertain arc capacities“. Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/30734.
Der volle Inhalt der QuelleBücher zum Thema "Analysis of encrypted network flow"
Cherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li und Xiao Liu. Encrypted Network Traffic Analysis. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9.
Der volle Inhalt der QuelleJensen, Paul A. Network flow programming. Malabar, Fla: R.E. Krieger Pub. Co., 1987.
Den vollen Inhalt der Quelle findenWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Analysis of encrypted network flow"
Cherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li und Xiao Liu. „Encrypted Network Traffic Analysis“. In Encrypted Network Traffic Analysis, 19–45. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_2.
Der volle Inhalt der QuelleCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li und Xiao Liu. „Detection of Anomalous Encrypted Traffic“. In Encrypted Network Traffic Analysis, 61–72. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_4.
Der volle Inhalt der QuelleCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li und Xiao Liu. „Classification of Encrypted Network Traffic“. In Encrypted Network Traffic Analysis, 47–59. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_3.
Der volle Inhalt der QuelleCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li und Xiao Liu. „Artificial Intelligence-Based Approaches for Anomaly Detection“. In Encrypted Network Traffic Analysis, 73–99. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_5.
Der volle Inhalt der QuelleCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li und Xiao Liu. „Introduction“. In Encrypted Network Traffic Analysis, 1–17. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_1.
Der volle Inhalt der QuelleRennels, Donald C., und Hobart M. Hudson. „Network Analysis“. In Pipe Flow, 49–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118275276.ch5.
Der volle Inhalt der QuelleTian, Yu-Chu, und Jing Gao. „Traffic Flow Analysis“. In Network Analysis and Architecture, 79–120. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5648-7_4.
Der volle Inhalt der QuelleHublikar, Shivaraj, und N. Shekar V. Shet. „Hybrid Malicious Encrypted Network Traffic Flow Detection Model“. In Computer Networks and Inventive Communication Technologies, 357–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3035-5_28.
Der volle Inhalt der QuelleGonen, Serkan, Gokce Karacayilmaz, Harun Artuner, Mehmet Ali Bariskan und Ercan Nurcan Yilmaz. „Cyber Attack Detection with Encrypted Network Connection Analysis“. In Lecture Notes in Mechanical Engineering, 622–29. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6062-0_57.
Der volle Inhalt der QuelleKolaczyk, Eric D., und Gábor Csárdi. „Analysis of Network Flow Data“. In Use R!, 169–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44129-6_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Analysis of encrypted network flow"
Francesco Gentile, Antonio, Emilio Greco und Domenico Luca Carnì. „A Real Network Performance Analysis Testbed for Encrypted MQTT in DMS“. In 2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), 397–402. IEEE, 2024. http://dx.doi.org/10.1109/metrolivenv60384.2024.10615766.
Der volle Inhalt der QuellePrashal, Garima, Parasuraman Sumathi und Narayana Prasad Padhy. „Interpretable Deep Bayesian Neural Network for Probabilistic Power Flow Analysis“. In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10689085.
Der volle Inhalt der QuelleKim, Dongeon, Jihun Han, Jinwoo Lee, Heejun Roh und Wonjun Lee. „Poster: Feasibility of Malware Traffic Analysis through TLS-Encrypted Flow Visualization“. In 2020 IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 2020. http://dx.doi.org/10.1109/icnp49622.2020.9259387.
Der volle Inhalt der QuelleFu, Chuanpu, Qi Li und Ke Xu. „Detecting Unknown Encrypted Malicious Traffic in Real Time via Flow Interaction Graph Analysis“. In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2023. http://dx.doi.org/10.14722/ndss.2023.23080.
Der volle Inhalt der QuelleShahbar, Khalid, und A. Nur Zincir-Heywood. „How far can we push flow analysis to identify encrypted anonymity network traffic?“ In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2018. http://dx.doi.org/10.1109/noms.2018.8406156.
Der volle Inhalt der QuelleTalkington, Josh, Ram Dantu und Kirill Morozov. „Verifying OAuth Implementations Through Encrypted Network Analysis“. In SACMAT '19: The 24th ACM Symposium on Access Control Models and Technologies. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3322431.3326449.
Der volle Inhalt der QuelleLiu, Chang, Longtao He, Gang Xiong, Zigang Cao und Zhen Li. „FS-Net: A Flow Sequence Network For Encrypted Traffic Classification“. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE, 2019. http://dx.doi.org/10.1109/infocom.2019.8737507.
Der volle Inhalt der QuelleSiby, Sandra, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez und Carmela Troncoso. „Encrypted DNS --> Privacy? A Traffic Analysis Perspective“. In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/ndss.2020.24301.
Der volle Inhalt der QuelleJun, Luo, und Xu Chang Yue. „Analysis for an intelligent behavior of encrypted network“. In 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE, 2020. http://dx.doi.org/10.1109/icbase51474.2020.00061.
Der volle Inhalt der Quelle„SECURITY SENSOR PROVIDING ANALYSIS OF ENCRYPTED NETWORK DATA“. In 2nd International Conference on Web Information Systems and Technologies. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0001254401720177.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Analysis of encrypted network flow"
Bethel, E. Wes. Query-Driven Network Flow Data Analysis and Visualization. Office of Scientific and Technical Information (OSTI), Juni 2006. http://dx.doi.org/10.2172/888963.
Der volle Inhalt der QuelleBrowning, D. W., und J. B. Thomas. A Numerical Analysis of a Queue with Network Access Flow Control,. Fort Belvoir, VA: Defense Technical Information Center, Januar 1985. http://dx.doi.org/10.21236/ada157526.
Der volle Inhalt der QuelleBonnett, Michaela, Chimdi Ezeigwe, Meaghan Kennedy und Teri Garstka. Using Social Network Analysis to Link Community Health and Network Strength. Orange Sparkle Ball, Juli 2023. http://dx.doi.org/10.61152/scsf6662.
Der volle Inhalt der QuellePatel, Reena. Complex network analysis for early detection of failure mechanisms in resilient bio-structures. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/41042.
Der volle Inhalt der QuelleZhu, Zhihong, Yue Zhuo, Haitao Jin, Boyu Wu und Zhijie Li. Chinese Medicine Therapies for Neurogenic Bladder after Spinal Cord Injury: A protocol for systematic review and network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2021. http://dx.doi.org/10.37766/inplasy2021.8.0084.
Der volle Inhalt der QuelleWeissinger, Rebecca, Mary Moran, Steve Monroe und Helen Thomas. Springs and seeps monitoring protocol for park units in the Northern Colorado Plateau Network, Version 1.1. National Park Service, Juni 2023. http://dx.doi.org/10.36967/2299467.
Der volle Inhalt der QuelleCandelaria, Christopher, Sergey Borisov, Galina Hale und Julián Caballero. Bank Linkages and International Trade. Inter-American Development Bank, Dezember 2013. http://dx.doi.org/10.18235/0011522.
Der volle Inhalt der QuelleRusso, David, Daniel M. Tartakovsky und Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Der volle Inhalt der QuelleSiebenaler. L52272 Detection of Small Leaks in Liquid Pipelines - Gap Study of Available Methods. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 2007. http://dx.doi.org/10.55274/r0010662.
Der volle Inhalt der QuelleKyllönen, Katriina, Karri Saarnio, Ulla Makkonen und Heidi Hellén. Verification of the validity of air quality measurements related to the Directive 2004/107/EC in 2019-2020 (DIRME2019). Finnish Meteorological Institute, 2020. http://dx.doi.org/10.35614/isbn.9789523361256.
Der volle Inhalt der Quelle