Dissertationen zum Thema „Analysis and filtering of network traffic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Analysis and filtering of network traffic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Klečka, Jan. „Monitorovací sonda síťové komunikace“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442398.
Der volle Inhalt der QuelleLiu, Wei 1975. „Network traffic modelling and analysis“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82613.
Der volle Inhalt der QuelleThis thesis focuses on traffic modelling and analysis. A novel traffic model is proposed which can capture the traffic behaviours in all-photonic networks. The new model is based on a study of existing traffic modelling literature. It combines the time-varying Poisson model, gravity model and fractional Gaussian noise. This model can be used for the short-range traffic prediction. We examine Long-Range Dependence and test the time constancy of scaling parameters using the tools designed by Abry and Veitch, to analyze empirical and synthesized traffic traces.
Simhairi, Nather Zeki. „Traffic assignment and network analysis“. Thesis, Royal Holloway, University of London, 1987. http://repository.royalholloway.ac.uk/items/a3377f99-4ed8-4000-91f8-0384aed4a3c6/1/.
Der volle Inhalt der QuelleLiu, Jian. „Fractal Network Traffic Analysis with Applications“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11477.
Der volle Inhalt der QuelleJiang, Michael Zhonghua. „Analysis of wireless data network traffic“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0012/MQ61444.pdf.
Der volle Inhalt der QuelleHeller, Mark D. „Behavioral analysis of network flow traffic“. Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/5108.
Der volle Inhalt der QuelleNetwork Behavior Analysis (NBA) is a technique to enhance network security by passively monitoring aggregate traffic patterns and noting unusual action or departures from normal operations. The analysis is typically performed offline, due to the huge volume of input data, in contrast to conventional intrusion prevention solutions based on deep packet inspection, signature detection, and real-time blocking. After establishing a benchmark for normal traffic, an NBA program monitors network activity and flags unknown, new, or unusual patterns that might indicate the presence of a potential threat. NBA also monitors and records trends in bandwidth and protocol use. Computer users in the Department of Defense (DoD) operational networks may use Hypertext Transport Protocol (HTTP) to stream video from multimedia sites like youtube.com, myspace.com, mtv.com, and blackplanet.com. Such streaming may hog bandwidth, a grave concern, given that increasing amounts of operational data are exchanged over the Global Information Grid, and introduce malicious viruses inadvertently. This thesis develops an NBA solution to identify and estimate the bandwidth usage of HTTP streaming video traffic entirely from flow records such as Cisco's NetFlow data.
Zhang, Yichi. „Residential Network Traffic and User Behavior Analysis“. Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-27001.
Der volle Inhalt der QuelleKreibich, Christian Peter. „Structural traffic analysis for network security monitoring“. Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613090.
Der volle Inhalt der QuelleYu, Han. „Analysis of network traffic in grid system“. Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/35162.
Der volle Inhalt der QuelleVu, Hong Linh. „DNS Traffic Analysis for Network-based Malware Detection“. Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93842.
Der volle Inhalt der QuelleBotnets betraktas som ett av de svåraste Internet-hoten idag. Botnets har använts vid många attacker mot multinationella organisationer och även nationella myndigheters och andra nationella Internet-tjänster. Allt eftersom mer effektiva detekterings - och skyddstekniker tas fram av säkerhetsforskare, har utvecklarna av botnets tagit fram nya tekniker för att undvika upptäckt. Därför är det inte förvånande att domännamnssystemet (Domain Name System, DNS) missbrukas av botnets för att undvika upptäckt, på grund av den viktiga roll domännamnssystemet har för Internets funktion - DNS ger en flexibel bindning mellan domännamn och IP-adresser. Domain-flux och fast-flux (även kallat IP-flux) är två relativt nya tekniker som används för att undvika spårning och svartlistning av IP-adresser av botnet-skyddsmekanismer genom att snabbt förändra bindningen mellan namn och IP-adresser som används av botnets. I denna rapport används passiv DNS-analys för att utveckla en anomali-baserad teknik för detektering av botnets som använder sig av domain-flux eller fast-flux. Tekniken baseras på skapandet av en uppslagnings-graf och en fel-graf från insamlad DNS-traffik och bryter ned dessa grafer i kluster som har stark korrelation mellan de ingående domänerna, maskinerna, och IP-adresserna. DNSrelaterade egenskaper extraheras för varje kluster och används som indata till en klassifficeringsmodul för identiffiering av domain-flux och fast-flux botnets i nätet. Utvärdering av metoden genom experiment på insamlade traffikspår visar att den föreslagna tekniken lyckas upptäcka domain-flux botnets i traffiken. Genom att fokusera på DNS-information kompletterar den föreslagna tekniken andra tekniker för detektering av botnets genom traffikanalys.
Hunter, John B. Gromann Holger. „Analysis and design of a universal traffic network /“. Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA384024.
Der volle Inhalt der Quelle"September 2000." Thesis advisor(s): Lundy, Gilbert M. Includes bibliographical references (p. 113-115). Also available online.
Hunter, John B., und Holger Gromann. „Analysis and design of a universal traffic network“. Thesis, Monterey, California. Naval Postgraduate School, 2000. http://hdl.handle.net/10945/9406.
Der volle Inhalt der QuelleWeaver, Cyrus-Charles. „Understanding information seeking behavior through network traffic analysis“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46520.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 150-151).
Many of today's information workers use the Internet as a valuable first-choice source for new knowledge. As such, Internet based information seeking is a key part of how information workers find information. This study develops techniques to quantify the information seeking patterns of information workers by looking at Web Site diversity, page rank, and general statistics of Web Site viewership. Future research by our group will build on these measurement techniques and explore the relationship between information worker productivity and Internet information seeking behavior.
by Cyrus-Charles Weaver.
M.Eng.
Cowan, KC Kaye. „Detecting Hidden Wireless Cameras through Network Traffic Analysis“. Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100148.
Der volle Inhalt der QuelleMaster of Science
Wireless cameras may be found almost anywhere, whether they are used to monitor city traffic and report on travel conditions or to act as home surveillance when residents are away. Regardless of their purpose, wireless cameras may observe people wherever they are, as long as a power source and Wi-Fi connection are available. While most wireless camera users install such devices for peace of mind, there are some who take advantage of cameras to record others without their permission, sometimes in compromising positions or places. Because of this, systems are needed that may detect hidden wireless cameras. We develop a system that monitors network traffic packets, specifically based on their packet lengths and direction, and determines if the properties of the packets mimic those of a wireless camera stream. A double-layered classification technique is used to uncover hidden wireless cameras and filter out non-wireless camera devices.
Senthivel, Saranyan. „Automatic Forensic Analysis of PCCC Network Traffic Log“. ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2394.
Der volle Inhalt der QuelleNaboulsi, Diala. „Analysis and exploitation of mobile traffic datasets“. Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0084/document.
Der volle Inhalt der QuelleMobile devices are becoming an integral part of our everyday digitalized life. In 2014, the number of mobile devices, connected to the internet and consuming traffic, has even exceeded the number of human beings on earth. These devices constantly interact with the network infrastructure and their activity is recorded by network operators, for monitoring and billing purposes. The resulting logs, collected as mobile traffic datasets, convey important information concerning spatio-temporal traffic dynamics, relating to large populations with millions of individuals. The thesis sheds light on the potential carried by mobile traffic datasets for future cellular networks. On one hand, we target the analysis of these datasets. We propose a usage patterns characterization framework, capable of defining meaningful categories of mobile traffic profiles and classifying network usages accordingly. On the other hand, we exploit mobile traffic datasets to evaluate two dynamic networking solutions. First, we focus on the reduction of energy consumption over typical Radio Access Networks (RAN). We introduce a power control mechanism that adapts the RAN's power configuration to users demands, while maintaining a geographical coverage. We show that our scheme allows to significantly reduce power consumption over the network infrastructure. Second, we study the problem of topology management of future Cloud-RAN (C-RAN). We propose a mobility-driven dynamic association scheme of the C-RAN components, which takes into account users traffic demand. The introduced strategy is observed to lead to important savings in the network, in terms of handovers
Dupasquier, Benoit. „Monitoring and analysis of network traffic for information security“. Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601445.
Der volle Inhalt der QuelleChang, Xuquan Stanley, und Kim Yong Chua. „A cyberciege traffic analysis extension for teaching network security“. Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/10578.
Der volle Inhalt der QuelleMoe, Lwin P. „Cyber security risk analysis framework : network traffic anomaly detection“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118536.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 84-86).
Cybersecurity is a growing research area with direct commercial impact to organizations and companies in every industry. With all other technological advancements in the Internet of Things (IoT), mobile devices, cloud computing, 5G network, and artificial intelligence, the need for cybersecurity is more critical than ever before. These technologies drive the need for tighter cybersecurity implementations, while at the same time act as enablers to provide more advanced security solutions. This paper will discuss a framework that can predict cybersecurity risk by identifying normal network behavior and detect network traffic anomalies. Our research focuses on the analysis of the historical network traffic data to identify network usage trends and security vulnerabilities. Specifically, this thesis will focus on multiple components of the data analytics platform. It explores the big data platform architecture, and data ingestion, analysis, and engineering processes. The experiments were conducted utilizing various time series algorithms (Seasonal ETS, Seasonal ARIMA, TBATS, Double-Seasonal Holt-Winters, and Ensemble methods) and Long Short-Term Memory Recurrent Neural Network algorithm. Upon creating the baselines and forecasting network traffic trends, the anomaly detection algorithm was implemented using specific thresholds to detect network traffic trends that show significant variation from the baseline. Lastly, the network traffic data was analyzed and forecasted in various dimensions: total volume, source vs. destination volume, protocol, port, machine, geography, and network structure and pattern. The experiments were conducted with multiple approaches to get more insights into the network patterns and traffic trends to detect anomalies.
by Lwin P. Moe.
S.M. in Engineering and Management
Sun, Jie. „Locality of Internet Traffic : An analysis based upon traffic in an IP access network“. Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107686.
Der volle Inhalt der QuelleDen ökande tillväxten av Internet Trafik har blivit en viktig fråga med anledning av den snabba utvecklingen av olika internetbaserade applikationer och tjänster. En av utmaningarna för Internet leverantörerna är att optimera prestandan i sina nät inför de ständigt ökande datamängderna och samtidigt garantera kvalitet på tjänsterna (QoS). Därför är det nödvändigt för Internetleverantörer att studera trafikmönster och lokala differentierade användarbeteenden, för att uppskatta trender av nyttjande av internettjänster, och därmed komma med lösningar som effektivt och ekonomiskt stödja deras kunders trafik. Det främsta syftet med denna avhandling är att analysera och karaktärisera internettrafiken i ett lokalt IP baserat multiservicenätverk i Sverige (i denna rapport avseende "Network North"). Uppgifterna om trafikmängden mättes i realtid med ett övervakningsverktyg från PacketLogic. Trafik till och från det övervakade nätverkets olika destinationer fångades upp och delades in i 5 cirkelliknande lokaliseringsnivåer i enlighet med geografiska trafikdestinationer: trafik inom nätverket North och till resten av norra Sverige, Sverige, Europa och världen. Parametrar som trafikmönster (t.ex. distribuerad internettrafik mängd, användning av olika tjänster och applikationer med dess popularitet) och användarbeteenden (t.ex. användar-vanor och intressen, etc.) på olika geografiska lokaliseringsnivåer har studerades i inom projekt. Som ett resultat av de systematiska och djupgående internetmätningar med det faktum av det stora antalet existerande tjänsteinnehållsservrar som ofta finns placerad långt ifrån slutanvändaren, ute i världen eller i Europa som är ganska så många till antalet. Rekommenderar vi att ett intelligent tjänstedistributionssystem appliceras närmre slutanvändaren på en regional nivå, för att minska på dagens onödiga omfattande duplicerande internettrafik i nom stamnäteten. Resultaten av dessa trafikmätningar av internettrafik ger en tidsmässig referens för Internetleverantörerna av deras nuvarande trafik och bör göra det möjligt för dem att bättre hantera sin nätverksinfrastruktur. Men på grund av vissa omständigheter begränsades mätanalysen på grund av möjliga och tillgängliga tidrammar att utföra dagliga trafikmätningsuppsättningen. För att ge en mer tillförlitlig lösning kan en på en längre sikt, periodisk och säsongsbunden trafikanalys göras i framtiden, baserat på den etablerade mätinfrastrukturen.
Mawji, Afzal. „Achieving Scalable, Exhaustive Network Data Processing by Exploiting Parallelism“. Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/779.
Der volle Inhalt der QuelleKim, Seong Soo. „Real-time analysis of aggregate network traffic for anomaly detection“. Texas A&M University, 2005. http://hdl.handle.net/1969.1/2312.
Der volle Inhalt der QuelleStergiou, Ilias. „Novel computer-network traffic modelling techniques for analysis and simulation“. Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323059.
Der volle Inhalt der QuelleKhasgiwala, Jitesh. „Analysis of Time-Based Approach for Detecting Anomalous Network Traffic“. Ohio University / OhioLINK, 2005. http://www.ohiolink.edu/etd/view.cgi?ohiou1113583042.
Der volle Inhalt der QuelleNkhumeleni, Thizwilondi Moses. „Correlation and comparative analysis of traffic across five network telescopes“. Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1011668.
Der volle Inhalt der QuelleVieira, Thiago Pereira de Brito. „An approach for profiling distributed applications through network traffic analysis“. Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/12454.
Der volle Inhalt der QuelleApproved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-13T14:22:30Z (GMT) No. of bitstreams: 2 Dissertação Thiago Vieira.pdf: 1199574 bytes, checksum: 81f443f0b4fbf4d223cda440cc56d722 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Made available in DSpace on 2015-03-13T14:22:30Z (GMT). No. of bitstreams: 2 Dissertação Thiago Vieira.pdf: 1199574 bytes, checksum: 81f443f0b4fbf4d223cda440cc56d722 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-03-05
Distributed systems has been adopted for building modern Internet services and cloud computing infrastructures, in order to obtain services with high performance, scalability, and reliability. Cloud computing SLAs require low time to identify, diagnose and solve problems in a cloud computing production infrastructure, in order to avoid negative impacts into the quality of service provided for its clients. Thus, the detection of error causes, diagnose and reproduction of errors are challenges that motivate efforts to the development of less intrusive mechanisms for monitoring and debugging distributed applications at runtime. Network traffic analysis is one option to the distributed systems measurement, although there are limitations on capacity to process large amounts of network traffic in short time, and on scalability to process network traffic where there is variation of resource demand. The goal of this dissertation is to analyse the processing capacity problem for measuring distributed systems through network traffic analysis, in order to evaluate the performance of distributed systems at a data center, using commodity hardware and cloud computing services, in a minimally intrusive way. We propose a new approach based on MapReduce, for deep inspection of distributed application traffic, in order to evaluate the performance of distributed systems at runtime, using commodity hardware. In this dissertation we evaluated the effectiveness of MapReduce for a deep packet inspection algorithm, its processing capacity, completion time speedup, processing capacity scalability, and the behavior followed by MapReduce phases, when applied to deep packet inspection for extracting indicators of distributed applications.
Sistemas distribuídos têm sido utilizados na construção de modernos serviços da Internet e infraestrutura de computação em núvem, com o intuito de obter serviços com alto desempenho, escalabilidade e confiabilidade. Os acordos de níves de serviço adotados pela computação na núvem requerem um reduzido tempo para identificar, diagnosticar e solucionar problemas em sua infraestrutura, de modo a evitar que problemas gerem impactos negativos na qualidade dos serviços prestados aos seus clientes. Então, a detecção de causas de erros, diagnóstico e reprodução de erros provenientes de sistemas distribuídos são desafios que motivam esforços para o desenvolvimento de mecanismos menos intrusivos e mais eficientes, para o monitoramento e depuração de aplicações distribuídas em tempo de execução. A análise de tráfego de rede é uma opção para a medição de sistemas distribuídos, embora haja limitações na capacidade de processar grande quantidade de tráfego de rede em curto tempo, e na escalabilidade para processar tráfego de rede sob variação de demanda de recursos. O objetivo desta dissertação é analisar o problema da capacidade de processamento para mensurar sistemas distribuídos através da análise de tráfego de rede, com o intuito de avaliar o desempenho de sistemas distribuídos de um data center, usando hardware não especializado e serviços de computação em núvem, de uma forma minimamente intrusiva. Nós propusemos uma nova abordagem baseada em MapReduce para profundamente inspecionar tráfego de rede de aplicações distribuídas, com o objetivo de avaliar o desempenho de sistemas distribuídos em tempo de execução, usando hardware não especializado. Nesta dissertação nós avaliamos a eficácia do MapReduce para um algoritimo de avaliação profunda de pacotes, sua capacidade de processamento, o ganho no tempo de conclusão de tarefas, a escalabilidade na capacidade de processamento, e o comportamento seguido pelas fases do MapReduce, quando aplicado à inspeção profunda de pacotes, para extrair indicadores de aplicações distribuídas.
Ntlangu, Mbulelo Brenwen. „Modelling computer network traffic using wavelets and time series analysis“. Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30146.
Der volle Inhalt der QuelleNordlöv, Anna, und Niklas Lindqvist. „Network based spatial analysis of traffic accidents in Stockholm, Sweden“. Thesis, KTH, Geoinformatik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188515.
Der volle Inhalt der QuelleCaldwell, Sean W. „On Traffic Analysis of 4G/LTE Traffic“. Cleveland State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=csu1632179249187618.
Der volle Inhalt der QuelleLiu, Lei. „Analytical Modelling of Scheduling Schemes under Self-similar Network Traffic. Traffic Modelling and Performance Analysis of Centralized and Distributed Scheduling Schemes“. Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4863.
Der volle Inhalt der QuelleWare, Ryan T. „An analysis of two layers of encryption to protect network traffic“. Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Jun/10Jun%5FWare.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Dinolt, George ; Second Reader: Guild, Jennifer. "June 2010." Description based on title screen as viewed on July 15, 2010. Author(s) subject terms: encryption, computer security, network security, architecture, fault tree analysis, defense-in-depth Includes bibliographical references (p. 75-77). Also available in print.
Kalyar, Iftekhar A. „Prediction of Sunday afternoon traffic using neural network and regression analysis“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0005/MQ35841.pdf.
Der volle Inhalt der QuelleBanerji, Pratip K. „An analysis of network management traffic and requirements in wireless networks“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42744.
Der volle Inhalt der QuelleIorliam, Aamo. „Application of power laws to biometrics, forensics and network traffic analysis“. Thesis, University of Surrey, 2016. http://epubs.surrey.ac.uk/812720/.
Der volle Inhalt der QuelleKälkäinen, J. (Juha). „Collection and analysis of malicious SSH traffic in Oulu University network“. Bachelor's thesis, University of Oulu, 2018. http://urn.fi/URN:NBN:fi:oulu-201812053224.
Der volle Inhalt der QuelleSecure Shell (SSH) on monissa organisaatioissa yleisesti käytetty työkalu suojatun tietoliikenteen muodostamiseen ja luotettavaa tietoa sekä resursseja sisältävien järjestelmien etäkäyttöön. Tähän protokollaan kohdistettujen eri uhkien arvioimiseen, niitä vastaan puolustautumiseen ja niiden opiskeluun voidaan käyttää hunajapurkkia. Tämä opinnäytetyö tutki Oulun yliopiston verkkoon kohdistettua haitallista SSH-tietoliikennettä käyttämällä SSH-hunajapurkkia Cowrie. Hunajapurkki asetettiin panOULU-verkkoon, joka sijaitsee Oulun yliopiston kampuksella. Kaksi muuta identtistä hunajapurkkia asetettiin eri verkkoihin haitallisen tietoliikenteen poikkeavuuksien tutkimiseksi. Tämän lisäksi passiiviseen sormenjälkitunnistukseen pohjautuvaa työkalua p0f käytettiin selvittämään, mistä eri käyttöjärjestelmistä hyökkäykset alun perin saapuivat. Hunajapurkit olivat onnistuneesti päällä ja keräsivät tietoja 12 päivää. Kerättyjen tietojen perusteella kaikkiin kolmeen verkkoon kohdistettu haitallinen SSH-tietoliikenne oli hyvin samankaltaista. Yleisin kaikkiin kolmeen hunajapurkkiin kohdistettu kanssakäyminen saapui todennäköisesti botteilta, joiden tavoitteena on saada haltuun resursseja hyväksikäyttämällä yleisiä haavoittuvuuksia. P0f-ohjelmalla kerätty tieto paljasti yleisimmän hyökkääjien käyttämän tunnistetun käyttöjärjestelmän olevan Linux-pohjainen. Tutkimus osoitti, että SSH-hunajapurkkeja voidaan käyttää tiedon keräämiseen, joka on arvokasta kenelle tahansa tietoturva-asiantuntijalle tai verkon ylläpitäjälle. Yliopiston verkko ja kaksi muuta tutkittua verkkoa ovat jatkuvan hyökkäyksien ja tarkkailun alaisena
Syal, Astha. „Automatic Network Traffic Anomaly Detection and Analysis using SupervisedMachine Learning Techniques“. Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1578259840945109.
Der volle Inhalt der QuelleLÖFROTH, BJÖRN. „Mobile traffic dataset comparisons throughcluster analysis of radio network event sequences“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-153914.
Der volle Inhalt der QuelleAtt jämföra trafikdatamängder för mobila enheter genom klusteranalys för sekvenser av event i radionätet Ericsson samlar regelbundet in trafikdatamängder ifrån olika radionätverk runt om i världen. Dessa datamängder kan användas i många olika forsknings- och utvecklingssyften, både ur ett generellt perspektiv genom att betrakta allmän statistik, men även för specifika studier som till exempel felsökning av system och analys av buffernivåer i nätverket. För närvarande kan det dock vara svårt för en potentiell analytiker av dessa datamängder att avgöra om de lämpar sig för en viss studie. Detta examensarbete är inriktat på att underlätta jämförelser mellan olika inspelningar av dessa trafikdatamängder vad gäller allmänstatistik, användar- och tidstäckning och dataintegritet samt mönster i loggarna för radionätshändelser. Det huvudsakliga bidraget av detta examensarbete är en metod för att klustra händelsesekvenser baserat på deras tidsspann och antal förekomster av nyckelhändelser. Den s.k. Gap Statistic-metoden användes för att avgöra att 11 kluster var lämpligt för klusteranalysen, även om starka bevis inte kunde hittas för existensen av tydligt separerade kluster i de studerade datamängderna. Resultaten visar på att den valda metoden kan fungera som en användbar fördjupning av allmän jämförande statistik. Två intervall av tätt samlande durationer för händelsesekvenser kunde länkas till två motsvarande kluster av sekvenser. Utförlig statistik om sekvenserna i dessa kluster kunde visa på sekvensernas egenskaper i stor detalj, på en djupare nivå än vad som kunde åstadkommas med allmän statistik. En problematisk del i tolkandet av metodens resultat var att flera olika perspektiv av data var tvungna att betraktas på samma gång för att kunna upptäcka intressanta länkar. En vidareutveckling av arbetet i denna rapport kan vara att skapa metoder för att automatisera och förenkla processen att länka intressanta fenomen i den allmänna statistiken till olika kluster.
Cunha, Rodrigo Lopes da. „Uplink video traffic determination and network optimization“. Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23487.
Der volle Inhalt der QuelleCom o aumento do número de plataformas de transmissão de vídeo, as operadoras têm sofrido uma maior sobrecarga nas suas redes. De forma a fornecer uma melhor gestão dessas mesmas redes, garantindo qualidade de serviço a todos os clientes, torna-se necessário dar prioridade ao tráfego correspondente a vídeo aplicando novos conveitos na área das telecomunicações, como é o caso de Software-Defined Networking. Esta dissertação procura, numa primeira fase, apresentar uma revisão de vários temas relacionados com a determinação de tráfego de vídeo, Software-Defined Networking e qualidade de serviço. Posteriormente, é apresentada uma solução de uma aplicação de monitorização, que tem como objetivo, a deteção de tráfego de vídeo, de forma a ajudar na priorização de tráfego e na otimização da rede. A solução é validada através de uma implementação, baseada na performance e na baixa latência do sistema, que procura responder o mais rápido possível com informação sobre um determinado fluxo de pacotes na rede. São ainda apresentados resultados relativos a esta implementação.
With the increase of live streaming platforms, service providers have been experiencing a overhead on their networks. In order to provide a better management of these networks, ensuring quality of service to all customers, it is necessary to prioritize video traffic using new concepts being introduced into the telecommunications field, such as Software-Defined Networking. Firstly, this dissertation aims to present a review of several topics related with video traffic determination, Software-Defned Networking and quality of service. Secondly, a monitoring application solution is presented, which aims to detect video traffic in order to help the prioritization of traffic and network optimization. The solution is validated through an implementation, based on the system’s performance and low latency, which tries to reply as quickly as possible with information about a certain flow of network packets. Results related with this implementation are also presented
Trovini, Kevin L. „Analysis of network traffic and bandwidth capacity : load balancing and rightsizing of Wide Area Network links /“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA322237.
Der volle Inhalt der Quelle"September 1996." Thesis advisor(s): S. Sridhar and Rex Buddenberg. Includes bibliographical references (p. 113-115). Also Available online.
Wallentinsson, Emma Wallentinsson. „Multiple Time Series Forecasting of Cellular Network Traffic“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154868.
Der volle Inhalt der QuelleCassir, C. „A flow model for the analysis of transport network reliability“. Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364764.
Der volle Inhalt der QuelleDarweesh, Turki H. „Capacity and performance analysis of a multi-user, mixed traffic GSM network“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0021/MQ48468.pdf.
Der volle Inhalt der QuelleChevalier, Philippe B., und Lawrence M. Wein. „Scheduling Networks of Queues: Heavy Traffic Analysis of a Multistation Closed Network“. Massachusetts Institute of Technology, Operations Research Center, 1990. http://hdl.handle.net/1721.1/5319.
Der volle Inhalt der QuelleDarweesh, Turki H. „Capacity and performance analysis of a multi-user, mixed traffic GSM network“. Ottawa, 1999.
Den vollen Inhalt der Quelle findenBoppana, Neelima. „Simulation and analysis of network traffic for efficient and reliable information transfer“. FIU Digital Commons, 2002. http://digitalcommons.fiu.edu/etd/1732.
Der volle Inhalt der QuelleGan, Diane Elisabeth. „Performance analysis of an ATM network with multimedia traffic : a simulation study“. Thesis, University of Greenwich, 1998. http://gala.gre.ac.uk/8653/.
Der volle Inhalt der QuelleEl-Shehaly, Mai Hassan. „A Visualization Framework for SiLK Data exploration and Scan Detection“. Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/34606.
Der volle Inhalt der QuelleMaster of Science
Durner, Raphael [Verfasser], Wolfgang [Akademischer Betreuer] Kellerer, Wolfgang [Gutachter] Kellerer und Georg [Gutachter] Carle. „Fine-grained isolation and filtering of network traffic using SDN and NFV / Raphael Durner ; Gutachter: Wolfgang Kellerer, Georg Carle ; Betreuer: Wolfgang Kellerer“. München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1241740143/34.
Der volle Inhalt der QuelleMaritz, Gert Stephanus Herman. „A network traffic analysis tool for the prediction of perceived VoIP call quality“. Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/17897.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The perceived quality of Voice over Internet Protocol (IP) (VoIP) communication relies on the network which is used to transport voice packets between the end points. Variable network characteristics such as bandwidth, delay and loss are critical for real-time voice traffic and are not always guaranteed by networks. It is important for network service providers to determine the Quality of Service (QoS) it provides to its customers. The solution proposed here is to predict the perceived quality of a VoIP call, in real-time by using network statistics. The main objective of this thesis is to develop a network analysis tool, which gathers meaningful statistics from network traffic. These statistics will then be used for predicting the perceived quality of a VoIP call. This study includes the investigation and deployment of two main components. Firstly, to determine call quality, it is necessary to extract the voice streams from captured network traffic. The extracted sound files can then be analysed by various VoIP quality models to determine the perceived quality of a VoIP call. The second component is the analysis of network characteristics. Loss, delay and jitter are all known to influence perceived call quality. These characteristics are, therefore, determined from the captured network traffic and compared with the call quality. Using the statistics obtained by the repeated comparison of the call quality and network characteristics, a network specific algorithm is generated. This Non-Intrusive Quality Prediction Algorithm (NIQPA) uses basic characteristics such as time of day, delay, loss and jitter to predict the quality of a real-time VoIP call quickly in a non-intrusive way. The realised algorithm for each network will differ, because every network is different. Prediction results can then be used to adapt either the network (more bandwidth, packet prioritising) or the voice stream (error correction, change VoIP codecs) to assure QoS.
AFRIKAANSE OPSOMMING: Die kwaliteit van spraak oor die internet (VoIP) kommunikasie is afhanklik van die netwerk wat gebruik word om spraakpakkies te vervoer tussen die eindpunte. Netwerk eienskappe soos bandwydte, vertraging en verlies is krities vir intydse spraakverkeer en kan nie altyd gewaarborg word deur netwerkverskaffers nie. Dit is belangrik vir die netwerk diensverskaffers om die vereiste gehalte van diens (QoS) te verskaf aan hul kliënte. Die oplossing wat hier voorgestel word is om die kwaliteit van ’n VoIP oproep intyds te voorspel, deur middel van die netwerkstatistieke. Die belangrikste doel van hierdie projek is om ’n netwerk analise-instrument te ontwikkel. Die instrument versamel betekenisvolle statistiek deur van netwerkverkeer gebruik te maak. Hierdie statistiek sal dan gebruik word om te voorspel wat die gehalte van ’n VoIP oproep sal wees vir sekere netwerk toestande. Hierdie studie berus op die ondersoek en implementering van twee belangrike komponente. In die eerste plek, moet oproep kwaliteit bepaal word. Spraakstrome word uit die netwerkverkeer onttrek. Die onttrekte klanklêers kan dan geanaliseer word deur verskeie spraak kwaliteitmodelle om die kwaliteitdegradasie van ’n spesifieke VoIP oproep vas te stel. Die tweede komponent is die analise van netwerkeienskappe. Pakkieverlies, pakkievertraging en bibbereffek is bekend vir hul invloed op VoIP kwaliteit en is waargeneem. Hierdie netwerk eienskappe word dus bepaal uit die netwerkverkeer en daarna vergelyk met die gemete gesprekskwaliteit. Statistiek word verkry deur die herhaalde vergelyking van gesprekkwaliteit en netwerk eienskappe. Uit die statistiek kan ’n algoritme (vir die spesifieke network) gegenereer word om spraakkwaliteit te voorspel. Hierdie Nie-Indringende Kwaliteit Voorspellings-algoritme (NIKVA), gebruik basiese kenmerke, soos die tyd van die dag, pakkie vertraging, pakkie verlies en bibbereffek om die kwaliteit van ’n huidige VoIP oproep te voorspel. Hierdie metode is vinnig, in ’n nie-indringende manier. Die gerealiseerde algoritme vir die verskillende netwerke sal verskil, want elke netwerk is anders. Die voorspelling van spraakgehalte kan dan gebruik word om òf die netwerk aan te pas (meer bandwydte, pakkie prioriteit) òf die spraakstroom aan te pas (foutkorreksie, verander VoIP kodering) om die goeie kwaliteit van ’n VoIP oproep te verseker.
Kim, Young Yong. „A study on traffic and channel dynamics for wireless multimedia network performance analysis /“. Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der Quelle