Zeitschriftenartikel zum Thema „Amides“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Amides" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Soong, Chee-Leong, Jun Ogawa und Sakayu Shimizu. „A Novel Amidase (Half-Amidase) for Half-Amide Hydrolysis Involved in the Bacterial Metabolism of Cyclic Imides“. Applied and Environmental Microbiology 66, Nr. 5 (01.05.2000): 1947–52. http://dx.doi.org/10.1128/aem.66.5.1947-1952.2000.
Der volle Inhalt der QuelleBarham, Joshua P., und Jaspreet Kaur. „Site-Selective C(sp3)–H Functionalizations Mediated by Hydrogen Atom Transfer Reactions via α-Amino/α-Amido Radicals“. Synthesis 54, Nr. 06 (25.10.2021): 1461–77. http://dx.doi.org/10.1055/a-1677-6619.
Der volle Inhalt der QuelleZhou, Yongyun, Ruhima Khan, Baomin Fan und Lijin Xu. „Ruthenium-Catalyzed Selective Reduction of Carboxylic Esters and Carboxamides“. Synthesis 51, Nr. 12 (30.04.2019): 2491–505. http://dx.doi.org/10.1055/s-0037-1611524.
Der volle Inhalt der QuelleZarecki, Adam P., Jacek L. Kolanowski und Wojciech T. Markiewicz. „Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids“. Molecules 25, Nr. 8 (11.04.2020): 1761. http://dx.doi.org/10.3390/molecules25081761.
Der volle Inhalt der QuelleOrsy, György, Sayeh Shahmohammadi und Enikő Forró. „A Sustainable Green Enzymatic Method for Amide Bond Formation“. Molecules 28, Nr. 15 (28.07.2023): 5706. http://dx.doi.org/10.3390/molecules28155706.
Der volle Inhalt der QuelleMartinez-Rodríguez, Sergio, Rafael Contreras-Montoya, Jesús M. Torres, Luis Álvarez de Cienfuegos und Jose Antonio Gavira. „A New L-Proline Amide Hydrolase with Potential Application within the Amidase Process“. Crystals 12, Nr. 1 (23.12.2021): 18. http://dx.doi.org/10.3390/cryst12010018.
Der volle Inhalt der QuelleKhalimon, Andrey, Kristina Gudun und Davit Hayrapetyan. „Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines“. Catalysts 9, Nr. 6 (28.05.2019): 490. http://dx.doi.org/10.3390/catal9060490.
Der volle Inhalt der QuelleFournand, David, Frederic Bigey und Alain Arnaud. „Acyl Transfer Activity of an Amidase from Rhodococcussp. Strain R312: Formation of a Wide Range of Hydroxamic Acids“. Applied and Environmental Microbiology 64, Nr. 8 (01.08.1998): 2844–52. http://dx.doi.org/10.1128/aem.64.8.2844-2852.1998.
Der volle Inhalt der QuelleDing, Wen, Shaoyu Mai und Qiuling Song. „Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles“. Beilstein Journal of Organic Chemistry 11 (11.11.2015): 2158–65. http://dx.doi.org/10.3762/bjoc.11.233.
Der volle Inhalt der QuelleKrieck, Sven, Philipp Schüler, Jan Peschel und Matthias Westerhausen. „Straightforward One-Pot Syntheses of Silylamides of Magnesium and Calcium via an In Situ Grignard Metalation Method“. Synthesis 51, Nr. 05 (13.12.2018): 1115–22. http://dx.doi.org/10.1055/s-0037-1610407.
Der volle Inhalt der QuelleMeerakrishna, Ramakrishnan Suseela, und Ponnusamy Shanmugam. „Synthesis of blue-red emissive amido-substituted di(het)aryl and tri(het)aryl amine derivatives via chemoselective N-mono and N,N-diarylation of (het) aryl amino amides using benzyne/arynes“. New Journal of Chemistry 43, Nr. 6 (2019): 2550–58. http://dx.doi.org/10.1039/c8nj05823g.
Der volle Inhalt der QuelleSelvakumar, Kumaravel, Kesamreddy Rangareddy und John F. Harrod. „The titanocene-catalyzed reduction of acetamides to tertiary amines by PhMeSiH2“. Canadian Journal of Chemistry 82, Nr. 8 (01.08.2004): 1244–48. http://dx.doi.org/10.1139/v04-063.
Der volle Inhalt der QuelleYao, Lei, Ming-Yi Wang, Xin-Ke Wang, Yi-Jun Liu, Hang-Fei Chen, Jun Zheng, Wei Nie et al. „Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions“. Atmospheric Chemistry and Physics 16, Nr. 22 (23.11.2016): 14527–43. http://dx.doi.org/10.5194/acp-16-14527-2016.
Der volle Inhalt der QuelleKhaldoun, Khadidja, Abdelmounaim Safer, Salima Saidi-Besbes, Bertrand Carboni, Rémy Le Guével und François Carreaux. „An Efficient Solvent-Free Microwave-Assisted Synthesis of Cinnamamides by Amidation Reaction Using Phenylboronic Acid/Lewis Base Co-catalytic System“. Synthesis 51, Nr. 20 (29.07.2019): 3891–900. http://dx.doi.org/10.1055/s-0039-1690132.
Der volle Inhalt der QuelleTrott, Sandra, Sibylle Bürger, Carsten Calaminus und Andreas Stolz. „Cloning and Heterologous Expression of an Enantioselective Amidase from Rhodococcus erythropolis Strain MP50“. Applied and Environmental Microbiology 68, Nr. 7 (Juli 2002): 3279–86. http://dx.doi.org/10.1128/aem.68.7.3279-3286.2002.
Der volle Inhalt der QuelleŠilhánková, Alexandra, Karel Šindelář, Karel Dobrovský, Ivan Krejčí, Jarmila Hodková und Zdeněk Polívka. „Synthesis of New L-Proline Amides with Anticonvulsive Effect“. Collection of Czechoslovak Chemical Communications 61, Nr. 7 (1996): 1085–92. http://dx.doi.org/10.1135/cccc19961085.
Der volle Inhalt der QuelleHaake, Paul, und Donald A. Tyssee. „Estimation of Charge Density on Nitrogen in Amides by Measurement of One-Bond Carbon-Hydrogen Nuclear Coupling Constants in N-CH3 Group“. Zeitschrift für Naturforschung A 48, Nr. 1-2 (01.02.1993): 58–62. http://dx.doi.org/10.1515/zna-1993-1-216.
Der volle Inhalt der QuelleQu, Jing, Shishan Yu, Wenzhao Tang, Yunbao Liu, Yue Liu und Jing Liu. „Progress on Cassaine-Type Diterpenoid Ester Amines and Amides (Erythrophleum Alkaloids)“. Natural Product Communications 1, Nr. 10 (Oktober 2006): 1934578X0600101. http://dx.doi.org/10.1177/1934578x0600101005.
Der volle Inhalt der QuelleZahardis, J., S. Geddes und G. A. Petrucci. „The ozonolysis of primary aliphatic amines in single and multicomponent fine particles“. Atmospheric Chemistry and Physics Discussions 7, Nr. 5 (15.10.2007): 14603–38. http://dx.doi.org/10.5194/acpd-7-14603-2007.
Der volle Inhalt der QuelleZahardis, J., S. Geddes und G. A. Petrucci. „The ozonolysis of primary aliphatic amines in fine particles“. Atmospheric Chemistry and Physics 8, Nr. 5 (29.02.2008): 1181–94. http://dx.doi.org/10.5194/acp-8-1181-2008.
Der volle Inhalt der QuelleWaseem Abbasi, Sana, Naveed Zafar Ali, Martin Etter, Muhammad Shabbir, Zareen Akhter, Stacey J. Smith, Hammad Ismail und Bushra Mirza. „Synthesis, Characterization and Biological Studies of Ether–Based Ferrocenyl Amides and their Organic Analogues“. Crystals 10, Nr. 6 (04.06.2020): 480. http://dx.doi.org/10.3390/cryst10060480.
Der volle Inhalt der QuelleSonke, Theo, Sandra Ernste, Renate F. Tandler, Bernard Kaptein, Wilco P. H. Peeters, Friso B. J. van Assema, Marcel G. Wubbolts und Hans E. Schoemaker. „l-Selective Amidase with Extremely Broad Substrate Specificity from Ochrobactrum anthropi NCIMB 40321“. Applied and Environmental Microbiology 71, Nr. 12 (Dezember 2005): 7961–73. http://dx.doi.org/10.1128/aem.71.12.7961-7973.2005.
Der volle Inhalt der QuelleDunn, P., E. A. Parkes und J. B. Polya. „Amides IX: Acylation of amides and amines“. Recueil des Travaux Chimiques des Pays-Bas 71, Nr. 7 (02.09.2010): 676–83. http://dx.doi.org/10.1002/recl.19520710708.
Der volle Inhalt der QuelleXu, Qing, Huamei Xie, Er-Lei Zhang, Xiantao Ma, Jianhui Chen, Xiao-Chun Yu und Huan Li. „Selective catalytic Hofmann N-alkylation of poor nucleophilic amines and amides with catalytic amounts of alkyl halides“. Green Chemistry 18, Nr. 14 (2016): 3940–44. http://dx.doi.org/10.1039/c6gc00938g.
Der volle Inhalt der QuelleNorth, Michael. „Amines and amides“. Journal of the Chemical Society, Perkin Transactions 1, Nr. 16 (1999): 2209–29. http://dx.doi.org/10.1039/a903369f.
Der volle Inhalt der QuelleNorth, Michael. „Amines and amides“. Contemporary Organic Synthesis 1, Nr. 6 (1994): 475. http://dx.doi.org/10.1039/co9940100475.
Der volle Inhalt der QuelleNorth, Michael. „Amines and amides“. Contemporary Organic Synthesis 2, Nr. 4 (1995): 269. http://dx.doi.org/10.1039/co9950200269.
Der volle Inhalt der QuelleNorth, Michael. „Amines and amides“. Contemporary Organic Synthesis 3, Nr. 4 (1996): 323. http://dx.doi.org/10.1039/co9960300323.
Der volle Inhalt der QuelleNorth, Michael. „Amines and amides“. Contemporary Organic Synthesis 4, Nr. 4 (1997): 326. http://dx.doi.org/10.1039/co9970400326.
Der volle Inhalt der QuelleNorth, Michael. „Amines and amides“. Journal of the Chemical Society, Perkin Transactions 1, Nr. 17 (1998): 2959–72. http://dx.doi.org/10.1039/a802125b.
Der volle Inhalt der QuelleKumagai, Naoya, und Masakatsu Shibasaki. „7-Azaindoline Auxiliary: A Versatile Attachment Facilitating Enantioselective C–C Bond-Forming Catalysis“. Synthesis 51, Nr. 01 (30.11.2018): 185–93. http://dx.doi.org/10.1055/s-0037-1610412.
Der volle Inhalt der QuelleCheng, Hua, Cheng Chen, Rui Zhang, Jun-Chao Zhang, Wei-Yi Zhang, Yu-Qing He und Yu-Cheng Gu. „A Practical Approach for the Transamidation of N,N-Dimethyl Amides with Primary Amines Promoted by Sodium tert-Butoxide under Solvent-Free Conditions“. Synthesis 52, Nr. 21 (08.09.2020): 3286–94. http://dx.doi.org/10.1055/s-0040-1705892.
Der volle Inhalt der QuelleOcampo Gutiérrez de Velasco, Diego, Aoze Su, Luhan Zhai, Satowa Kinoshita, Yuko Otani und Tomohiko Ohwada. „Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold“. Molecules 23, Nr. 9 (15.09.2018): 2363. http://dx.doi.org/10.3390/molecules23092363.
Der volle Inhalt der QuelleYang, Guo-Ping, Ke Li, Wei Liu, Kai Zeng und Yu-Feng Liu. „Copper-catalyzed aerobic oxidative C–C bond cleavage of simple ketones for the synthesis of amides“. Organic & Biomolecular Chemistry 18, Nr. 35 (2020): 6958–64. http://dx.doi.org/10.1039/d0ob01601b.
Der volle Inhalt der QuelleBittner, Nataly, Andy Boon, Evert H. Delbanco, Christof Walter und Angela Mally. „Assessment of aromatic amides in printed food contact materials: analysis of potential cleavage to primary aromatic amines during simulated passage through the gastrointestinal tract“. Archives of Toxicology 96, Nr. 5 (05.03.2022): 1423–35. http://dx.doi.org/10.1007/s00204-022-03254-w.
Der volle Inhalt der QuelleBox, Vernon G. S. „Biocidal Amidic Natural Products“. Natural Product Communications 3, Nr. 11 (November 2008): 1934578X0800301. http://dx.doi.org/10.1177/1934578x0800301111.
Der volle Inhalt der QuelleXia, Ji-Bao, Yan-Lin Li und Zheng-Yang Gu. „Transition-Metal-Catalyzed Intermolecular C–H Carbonylation toward Amides“. Synlett 32, Nr. 01 (17.08.2020): 07–13. http://dx.doi.org/10.1055/s-0040-1706416.
Der volle Inhalt der QuelleLaclef, Sylvain, Maria Kolympadi Marković und Dean Marković. „Amide Synthesis by Transamidation of Primary Carboxamides“. Synthesis 52, Nr. 21 (04.06.2020): 3231–42. http://dx.doi.org/10.1055/s-0040-1707133.
Der volle Inhalt der QuelleDas, Hari S., Shyamal Das, Kartick Dey, Bhagat Singh, Rahul K. Haridasan, Arpan Das, Jasimuddin Ahmed und Swadhin K. Mandal. „Primary amides to amines or nitriles: a dual role by a single catalyst“. Chemical Communications 55, Nr. 79 (2019): 11868–71. http://dx.doi.org/10.1039/c9cc05856g.
Der volle Inhalt der QuelleBlondiaux, Enguerrand, und Thibault Cantat. „Efficient metal-free hydrosilylation of tertiary, secondary and primary amides to amines“. Chem. Commun. 50, Nr. 66 (2014): 9349–52. http://dx.doi.org/10.1039/c4cc02894e.
Der volle Inhalt der QuelleHao, Hong-Yan, Shao-Jie Lou, Shuang Wang, Kun Zhou, Qiu-Zi Wu, Yang-Jie Mao, Zhen-Yuan Xu und Dan-Qian Xu. „Pd-catalysed β-selective C(sp3)–H arylation of simple amides“. Chemical Communications 57, Nr. 65 (2021): 8055–58. http://dx.doi.org/10.1039/d1cc02261j.
Der volle Inhalt der QuelleBhalla, Tek Chand, und Harish Kumar. „Nocardia globerula NHB-2: a versatile nitrile-degrading organism“. Canadian Journal of Microbiology 51, Nr. 8 (01.08.2005): 705–8. http://dx.doi.org/10.1139/w05-046.
Der volle Inhalt der QuelleRadenović, Čedomir, Danica Bajuk-Bogdanović, Milica Radosavljević, Nenad Delić, Aleksandar Popović, Mile Sečanski und Miloš Crevar. „Assaying of structural parts of hybrid ZP677 grain by IC method disordered Total reflection“. Selekcija i semenarstvo 28, Nr. 1 (2022): 9–22. http://dx.doi.org/10.5937/selsem2201009r.
Der volle Inhalt der QuelleWeaver-Guevara, Holly M., Ryan W. Fitzgerald und Arthur Greenberg. „Rotational barriers in five related amides“. Canadian Journal of Chemistry 95, Nr. 3 (März 2017): 271–77. http://dx.doi.org/10.1139/cjc-2016-0344.
Der volle Inhalt der QuelleGarg, Jai Anand, Subrata Chakraborty, Yehoshoa Ben-David und David Milstein. „Unprecedented iron-catalyzed selective hydrogenation of activated amides to amines and alcohols“. Chemical Communications 52, Nr. 30 (2016): 5285–88. http://dx.doi.org/10.1039/c6cc01505k.
Der volle Inhalt der QuelleBock, Hans, und Erik Heigel. „Wechselwirkungen in Molekülkristallen, 162 [1, 2]. Di(arylsulfonyl)amine – geeignete Liganden für lipophil umhüllte Polyionen-Aggregate mit Cs⊕ -Schichten variabler Dicke / Interaction in Molecular Crystals, 162 [1, 2]. Di(arylsulfonyl)amines – Ligands for Lipophilically Wrapped Polyion Aggregates with Cs⊕ -Layers of Variable Thickness“. Zeitschrift für Naturforschung B 55, Nr. 11 (01.11.2000): 1053–66. http://dx.doi.org/10.1515/znb-2000-1111.
Der volle Inhalt der QuelleSaha, Sayantani, und Moris S. Eisen. „Mild catalytic deoxygenation of amides promoted by thorium metallocene“. Dalton Transactions 49, Nr. 36 (2020): 12835–41. http://dx.doi.org/10.1039/d0dt02770g.
Der volle Inhalt der QuelleGlover, Stephen A., Arvi Rauk, Jeanne M. Buccigross, John J. Campbell, Gerard P. Hammond, Guoning Mo, Luke E. Andrews und Ashley-Mae E. Gillson. „The HERON reaction Origin, theoretical background, and prevalence“. Canadian Journal of Chemistry 83, Nr. 9 (01.09.2005): 1492–509. http://dx.doi.org/10.1139/v05-150.
Der volle Inhalt der QuelleSchuhmacher, Anne, Tomoya Shiro, Sarah J. Ryan und Jeffrey W. Bode. „Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs)“. Chemical Science 11, Nr. 29 (2020): 7609–14. http://dx.doi.org/10.1039/d0sc01330g.
Der volle Inhalt der QuelleYanev, Pavel, und Plamen Angelov. „Synthesis of functionalised β-keto amides by aminoacylation/domino fragmentation of β-enamino amides“. Beilstein Journal of Organic Chemistry 14 (10.10.2018): 2602–6. http://dx.doi.org/10.3762/bjoc.14.238.
Der volle Inhalt der Quelle