Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Aluminoborosilicate glass“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Aluminoborosilicate glass" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Aluminoborosilicate glass"
Malchukova, Eugenia, und Bruno Boizot. „Divalent Europium in β-Irradiated Aluminoborosilicate Glass“. Journal of the American Ceramic Society 93, Nr. 12 (23.11.2010): 4005–7. http://dx.doi.org/10.1111/j.1551-2916.2010.04209.x.
Der volle Inhalt der QuelleRuivo, Andreia, Marta Ferro, Suzana M. Andrade, João Rocha, Fernando Pina und César A. T. Laia. „Photoluminescent Nanocrystals in a Multicomponent Aluminoborosilicate Glass“. Journal of Physical Chemistry C 120, Nr. 43 (21.10.2016): 24925–31. http://dx.doi.org/10.1021/acs.jpcc.6b04552.
Der volle Inhalt der Quelle�beling, P. V., A. N. Krasnov und V. D. Khaliev. „Composition of lithium aluminoborosilicate glass and abrasive“. Glass and Ceramics 53, Nr. 3 (März 1996): 88–91. http://dx.doi.org/10.1007/bf01061496.
Der volle Inhalt der QuelleHashikawa, Ryo, Yasuhiro Fujii, Atsushi Kinomura, Takeshi Saito, Arifumi Okada, Takashi Wakasugi und Kohei Kadono. „Radiophotoluminescence phenomenon in copper-doped aluminoborosilicate glass“. Journal of the American Ceramic Society 102, Nr. 4 (10.09.2018): 1642–51. http://dx.doi.org/10.1111/jace.16027.
Der volle Inhalt der QuelleFialko, N. M., V. V. Shchepetov, S. D. Kharchenko, S. I. Kovtun, Ya N. Hladkyi und S. S. Bys. „Nanostructural glasscomposite self-lubricant coatings“. Problems of Tribology 27, Nr. 4/106 (18.12.2022): 6–12. http://dx.doi.org/10.31891/2079-1372-2022-106-4-6-12.
Der volle Inhalt der QuelleSuetsugu, Tatsuya, Takashi Wakasugi und Kohei Kadono. „Effect of glass composition on silver-incorporation into aluminoborosilicate glasses through a staining process“. Journal of Materials Research 25, Nr. 4 (April 2010): 701–7. http://dx.doi.org/10.1557/jmr.2010.0086.
Der volle Inhalt der QuelleSytnik, R. D., I. G. Kiuila, O. A. Ignatyuk und S. A. Sytnik. „Deposition of metal oxide coatings on aluminoborosilicate glass“. Glass and Ceramics 51, Nr. 2 (Februar 1994): 60–63. http://dx.doi.org/10.1007/bf00682686.
Der volle Inhalt der QuelleRuivo, Andreia, Suzana M. Andrade, João Rocha, César A. T. Laia und Fernando Pina. „Formation of Photoluminescent Lead Bromide Nanoparticles on Aluminoborosilicate Glass“. Journal of Physical Chemistry C 118, Nr. 23 (30.05.2014): 12436–42. http://dx.doi.org/10.1021/jp5003758.
Der volle Inhalt der QuelleSeo, Joobeom, Sangbae Kim, In-Kook Bae und Wantae Kim. „Roasting of pyrophyllite for application in aluminoborosilicate glass production“. Geosystem Engineering 23, Nr. 3 (24.01.2020): 123–30. http://dx.doi.org/10.1080/12269328.2020.1719904.
Der volle Inhalt der QuelleMorozumi, Hidekatsu, Satoshi Yoshida und Jun Matsuoka. „Composition dependence of crack formation probability in aluminoborosilicate glass“. Journal of Non-Crystalline Solids 444 (Juli 2016): 31–37. http://dx.doi.org/10.1016/j.jnoncrysol.2016.04.030.
Der volle Inhalt der QuelleDissertationen zum Thema "Aluminoborosilicate glass"
Achigar, Sophie. „Vitrification de déchets nucléaires de démantèlement riches en Mo, P et Zr. Etude structurale et microstructurale de leur incorporation dans un verre aluminoborosilicaté“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLC019.
Der volle Inhalt der QuelleThis work belongs to the DEM’N’MELT project, which is dedicated to the vitrification of intermediate or high level radioactive wastes coming from the dismantling of nuclear facilities. The waste compositions of this study, rich in P2O5, MoO3 et ZrO2 which activity is mainly due to 137Cs are close to the ones of the shutdown UP1 facility (Marcoule). Their main feature is the variability of their composition. This work objective is to study the incorporation of these wastes in an aluminoborosilicate glass rich in alkali oxides at 1100 °C.The first part of the study will be dedicated to a system close to the industrial one (11 oxides). It highlights that MoO3 and P2O5 are the main waste constituents responsible for phase separation or crystallization. Moreover, molybdate crystalline phases can contain Cs. ZrO2 is incorporated in the glassy matrix without leading to heterogeneities.Then, a simplified system (6-7 oxides) is studied along with the structural and microstructural incorporation mecanisms of P2O5 and MoO3. These oxides are first considered alone and then added simultaneously. This second study highlights that P et Mo mainly lead to the formation of entities isolated from the glassy network and that their simultaneous addition increases the crystallization tendency
Rehouma, Ferhat. „Étude de l'échange d'ions a l'argent dans un verre aluminoborosilicate : application a un procède d'enterrage sélectif des guides“. Grenoble INPG, 1994. http://www.theses.fr/1994INPG0093.
Der volle Inhalt der QuelleBuchteile zum Thema "Aluminoborosilicate glass"
Malchukova, Eugenia. „Influence of the Doping Ion Nature and Content on Defect Creation Processes under the Effect of Ionizing Radiation in Aluminoborosilicate Glasses“. In Recent Techniques and Applications in Ionizing Radiation Research. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92317.
Der volle Inhalt der Quelle„CONCLUSION While cleaned silica-based glass surfaces have similar surface compositions, their susceptibility to strongly adsorbing organic contaminant s depends strongly on the glass composition and the cleaning procedure. For the three glass species exam-ined: silica, aluminoborosilicate, and sodalime glass , the glass surfaces behave similarly after chromic acid cleaning. They show significant differences in their properties followin g a dry cleaning procedure, such as pyrolysis or UV/ozone cleaning. The cleaned silica surfaces show a high susceptibility to adsorbing or-ganic contamination following pyrolysis cleaning, while the pyrolyzed sodalime glass appears to be virtually immune to strongly adsorbing organic molecules. Py-rolyzed aluminoborosilicate glass shows an intermediate susceptibility to adsorb-ing organic contaminants. The chromic acid cleaned glass surfaces all show an in-termediate susceptibility to contamination by adsorbed organic molecules. Thus, it may be an oversimplification to consider a clean glass surface as a high energy substrate that is bound to attract ambient organic contamination. The wettability behavior of the cleaned glass surfaces showed features associ-ated with their exposed chemical functions. The non-dispersive interaction energy between glass and water as a function of pH showed evidence of charging of the surface silanol groups. The point of zero charge for these surface chemical func-tions was observed at pH 3. An estimate of the non-dispersive interaction energy between glass and water at the point of zero charge enables a reasonable estima-tion of the density of surface silanol groups on the cleaned glass. The trends ob-served for the surface charge as a function of pH correlate with the observed sus-ceptibility for adsorbing organic contamination to the cleaned glass surfaces. Charge-adsorbed surfactant monolayers indicated a negative surface charge on the cleaned glass, as expected for silica-based glass surfaces at neutral pH. The wettability of grafted self-assembled octadecylsilane monolayers indicated high quality coatings on the cleaned glass surfaces. The coating quality was identical for all three glass species following chromic acid cleaning. The UV/ozone cleaned glass surfaces showed the highest coating quality on the silica surface, followed by the aluminoborosilicate surface and the sodalime glass surface. The trends in coating quality for all chromic acid cleaned surfaces and UV/ozone cleaned surfaces correlate with those seen for susceptibility to organic contamina-tion of the cleaned glass surfaces exposed to unpurified liquid octane. REFERENCES“. In Surface Contamination and Cleaning, 114–16. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Aluminoborosilicate glass"
Mika, Martin, Milan Patek, Jaroslav Maixner, Simona Randakova und Pavel Hrma. „The Effect of Temperature and Composition on Spinel Concentration and Crystal Size in High-Level Waste Glass“. In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1324.
Der volle Inhalt der Quelle