Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „AlphaFold2“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "AlphaFold2" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "AlphaFold2"
Wheeler, Richard John. „A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure“. PLOS ONE 16, Nr. 11 (11.11.2021): e0259871. http://dx.doi.org/10.1371/journal.pone.0259871.
Der volle Inhalt der QuelleStein, Richard A., und Hassane S. Mchaourab. „SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2“. PLOS Computational Biology 18, Nr. 8 (22.08.2022): e1010483. http://dx.doi.org/10.1371/journal.pcbi.1010483.
Der volle Inhalt der QuelleGordon, Catriona H., Emily Hendrix, Yi He und Mark C. Walker. „AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes“. Biomolecules 13, Nr. 8 (12.08.2023): 1243. http://dx.doi.org/10.3390/biom13081243.
Der volle Inhalt der QuelleNunes-Alves, Ariane, und Kenneth Merz. „AlphaFold2 in Molecular Discovery“. Journal of Chemical Information and Modeling 63, Nr. 19 (09.10.2023): 5947–49. http://dx.doi.org/10.1021/acs.jcim.3c01459.
Der volle Inhalt der QuelleTourlet, Sébastien, Ragousandirane Radjasandirane, Julien Diharce und Alexandre G. de Brevern. „AlphaFold2 Update and Perspectives“. BioMedInformatics 3, Nr. 2 (09.05.2023): 378–90. http://dx.doi.org/10.3390/biomedinformatics3020025.
Der volle Inhalt der QuelleBollinger, Terry. „Why AlphaFold is Not Like AlphaGo“. Terry's Archive Online 2021, Nr. 02 (12.04.2021): 0206. http://dx.doi.org/10.48034/20210206.
Der volle Inhalt der QuelleNg, Tsz Kin, Jie Ji, Qingping Liu, Yao Yao, Wen-Ying Wang, Yingjie Cao, Chong-Bo Chen et al. „Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2“. Biomolecules 14, Nr. 1 (21.12.2023): 14. http://dx.doi.org/10.3390/biom14010014.
Der volle Inhalt der QuelleWilson, Carter J., Wing-Yiu Choy und Mikko Karttunen. „AlphaFold2: A Role for Disordered Protein/Region Prediction?“ International Journal of Molecular Sciences 23, Nr. 9 (21.04.2022): 4591. http://dx.doi.org/10.3390/ijms23094591.
Der volle Inhalt der Quelle伏信, 進矢. „【用語解説】AlphaFold2“. Bulletin of Applied Glycoscience 13, Nr. 2 (20.08.2023): 136. http://dx.doi.org/10.5458/bag.13.2_136.
Der volle Inhalt der QuelleBoland, Devon J., und Nicola M. Ayres. „Cracking AlphaFold2: Leveraging the power of artificial intelligence in undergraduate biochemistry curriculums“. PLOS Computational Biology 20, Nr. 6 (27.06.2024): e1012123. http://dx.doi.org/10.1371/journal.pcbi.1012123.
Der volle Inhalt der QuelleDissertationen zum Thema "AlphaFold2"
Launay, Romain. „Computational characterization and understanding of protein assemblies : the case of the Escherichia coli Ubi metabolon involved in ubiquinone biosynthesis“. Electronic Thesis or Diss., Toulouse, INSA, 2023. http://www.theses.fr/2023ISAT0055.
Der volle Inhalt der QuelleProtein-protein interactions (PPIs) and supramolecular assemblies are essential for the functions of living cells. They play an important role in various biological functions, such as signal transduction, cell-cell communication, transcription, replication and membrane transport. Determining and characterizing such interfaces remains a challenge in structural biology. However, advances in the development of computational methods and the power of the computing resources available today have led to a considerable improvement in the accuracy of in silico predictions of three-dimensional models of protein assemblies.In this thesis, the aim was to predict the structure of a supramolecular assembly, called the Ubi metabolon, involved in the ubiquinone (UQ8) biosynthesis pathway in Escherichia coli. Ubiquinone is a prenol with oxido-reducing properties, localized in membranes, and highly conserved throughout evolution but also in different cells of organisms. It is composed of two main parts, an aromatic group with oxido-reducing properties, known as quinone or polar head, and a polyisoprenoid tail which is hydrophobic in nature. In this study, we are interested in the final stages of the biosynthetic pathway, in particular the modifications (methylations and hydroxylations) of the polar head. These reactions take place within the Ubi metabolon. The latter is made up of seven different proteins (UbiE, UbiG, UbiF, UbiH, UbiI, UbiJ, UbiK) catalysing six consecutive enzymatic reactions.In this work, we sought to predict the structure of the metabolon and were thus able to propose a protein subset that we called the 'core subunit'. This sub-unit includes all the partners and could be biologically functional. In parallel, a study was carried out on the UbiJ-UbiK2 heterotrimer, an essential molecular brick of the Ubi metabolon. A three-dimensional model of UbiJ-UbiK2 was proposed. Using a multi-scale modelling study, it was shown that it could be involved in the release of ubiquinone from membranes. Finally, the last part of this work focused on studying the behavior of a particular family of enzymes, the class A flavin mono-oxygenases, to which UbiF, UbiH and UbiI belong. A comparative study between a representative enzyme from this family, called PHBH, and UbiI was carried out, concluding that interactions with partners were necessary to stabilize these proteins within the Ubi metabolon.Taken together, this work and the proposed hypotheses provide a new insight into the supramolecular organization of the Ubi metabolon, both structurally and functionally. Our results open up new prospects for their experimental study
Bruley, Apolline. „Exploitation de signatures des repliements protéiques pour décrire le continuum ordre/désordre au sein des protéomes“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS474.
Der volle Inhalt der QuelleA significant fraction of the proteomes remains unannotated, leaving inaccessible a part of the functional repertoire of life, including molecular innovations with therapeutic or environmental value. Lack of functional annotation is partly due to the limitations of the current approaches in detecting hidden relationships, or to specific features such as disorder. The aim of my PhD thesis was to develop methodological approaches based on the structural signatures of folded domains, in order to further characterize the protein sequences with unknown function even in absence of evolutionary information. First, I developed a scoring system in order to estimate the foldability potential of an amino acid sequence, based on its density in hydrophobic clusters, which mainly correspond to regular secondary structures. I disentangled the continuum between order and disorder, covering various states from extended conformations (random coils) to molten globules and characterize cases of conditional order. Next, I combined this scoring system with the AlphaFold2 (AF2) 3D structure predictions available for 21 reference proteomes. A large fraction of the amino acids with very low AF2 model confidence are included in non-foldable segments, supporting the quality of AF2 as a predictor of disorder. However, within each proteome, long segments with very low AF2 model confidence also exhibit characteristics of soluble, folded domains. This suggests hidden order (conditional or unconditional), which is undetected by AF2 due to lack of evolutionary information, or unrecorded folding patterns. Finally, using these tools, I made a preliminary exploration of unannotated proteins or regions, identified through the development and application of a new annotation workflow. Even though these sequences are enriched in disorder, an important part of them showcases soluble globular-like characteristics. These would make good candidates for further experimental validation and characterization. Moreover, the analysis of experimentally validated de novo genes allowed me to contribute to the still-open debate on the structural features of proteins encoded by these genes, enriched in disorder and displaying a great diversity of structura
Gosset, Simon. „Annotation du proteome d'A. thaliana via l'analyse et la prédiction de son interactome“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL004.
Der volle Inhalt der QuelleLiving organisms function thanks to a set of interactions between molecules called proteins. Identifying the pairs of proteins involved in these interactions provides a better understanding of how they function. There are several experimental methods for identifying these proteins, but they are either too expensive or not reliable enough to explore all the protein interactions that take place in living organisms. Computational methods have been developed to predict these interactions to meet this need. During my thesis, I set up a method for predicting protein-protein interactions using Alphafold-multimer, an innovative structure prediction method. At the same time, I produced a dataset describing the physico-chemical characteristics, binding energy and interaction propensity of the surfaces and interfaces of a large number of proteins to understand what distinguishes correctly predicted PPIs from incorrectly predicted PPI by the method I have set up
Aimeur, Sana. „Exploration de l'interaction p22phox/p47phox : une clé pour comprendre l'assemblage du complexe NADPH oxydase“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASF099.
Der volle Inhalt der QuelleThe phagocytic NADPH oxidase complex (NOX2) plays a pivotal role in generating reactive oxygen species, crucial for innate immunity and various physiological processes. Its dysregulation contributes to oxidative stress, aging, and inflammation. This complex enzyme comprises six subunits, including two membrane subunits, NOX2 and p22phox, and four cytosolic proteins (p47phox, p67phox, p40phox, and Rac). NOX2 and p22phox, encoded by the CYBB and CYBA genes, respectively, form the catalytic core of the phagocyte NADPH oxidase complex. This core, also known as flavocytochrome b558 (Cytb558), contains all redox intermediates for electron transfers needed to reduce oxygen to superoxide anions. Despite ongoing challenges like the complex's flexibility, understanding the structure and function of these subunits is an expanding research area. The enzyme's activation first requires the interaction between the p47phox protein and the p22phox membrane subunit. Investigating these proteins, particularly their interaction, is challenging due to their intrinsic properties, such as disordered regions, membrane domains, and highly flexible domain organization. Although several studies have been conducted, the molecular mechanisms involved remain to be clarified. This thesis focuses on several aspects of this interaction, addressing the issue by combining biochemical techniques (for both soluble and membrane proteins) with circular dichroism studies, nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and structure predictions by artificial intelligence (AlphaFold). These complementary approaches have enabled the proposal of a scenario demonstrating the conformational changes of p47phox from its inactive state to active states. These structural changes of p47phox have also been explored in the context of its interaction with p22phox, revealing previously unknown structural aspects of this interaction. Concurrently, artificial intelligence through AlphaFold has provided the first structural models of the assembled enzyme complex, allowing exploration of protein-protein and protein-lipid membrane interactions, which should encourage more in-depth future studies. Finally, the development of production and purification methods for recombinant membrane protein p22phox, particularly in native nanodiscs, adds new perspectives to this work that blends experimental and theoretical approaches
Buchteile zum Thema "AlphaFold2"
Laurent, Nussaume, Desnos Thierry, Jinsheng Zhu, David Pascale, Kumiko Miwa und Kanno Satomi. „Analysis and Comparison of Alphafold-Structure Predictions between Pi-Uptake Transporters Recovering Phosphate in Natural Environments“. In Plant Phosphorus Nutrition, 129–50. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003440079-9.
Der volle Inhalt der QuelleMubarak, Malad, Aastha Senapati, Purva Bankar, Nirmitee Dolas, Jyoti Srivastava, Shankar Mukundrao Khade und Krishna Kant Pandey. „Introduction to AI in Biotechnology and Biomedical Engineering“. In Future of AI in Biomedicine and Biotechnology, 1–17. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3629-8.ch001.
Der volle Inhalt der QuelleMoriarty, David. „Alphafold 2“. In Designing and Managing Complex Systems, 263–66. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-91609-7.00026-3.
Der volle Inhalt der QuelleMariano, Diego. „AlphaFold e a busca pelo Santo Graal da Biologia Molecular“. In BIOINFO #02 - Revista Brasileira de Bioinformática e Biologia Computacional, 162–67. 2. Aufl. Alfahelix, 2022. http://dx.doi.org/10.51780/978-65-992753-5-7-10.
Der volle Inhalt der QuelleBlaney, Jeff, und Andrew M. Davis. „Structure-based Design for Medicinal Chemists“. In The Handbook of Medicinal Chemistry, 137–87. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781788018982-00137.
Der volle Inhalt der QuelleJones, David T., und Janet M. Thornton. „AlphaFold — The End of the Protein Folding Problem or the Start of Something Bigger?“ In Artificial Intelligence for Science, 67–80. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811265679_0005.
Der volle Inhalt der QuelleGanguly, Rik, Shashi Kumar Yadav, Prosperwell Ingty, Angneh Ngoruh und Atanu Bhattacharjee. „LEVERAGING THE STRENGTH OF ARTIFICIAL INTELLIGENCE IN SOLVING PROTEIN STRUCTURES BY ALPHAFOLD-2- A MODERN APPROACH TO UNDERSTAND PROTEIN DYNAMICS“. In Futuristic Trends in Biotechnology Volume 2 Book 27, 234–45. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2023. http://dx.doi.org/10.58532/v2bs27p3ch1.
Der volle Inhalt der QuelleMuhammed, Muhammed Tilahun, und Esin Aki-Yalcin. „Up-to-Date Developments in Homology Modeling“. In Applied Computer-Aided Drug Design: Models and Methods, 116–35. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815179934123010006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "AlphaFold2"
Alshammari, Maytha, Jing He und Willy Wriggers. „AlphaFold2 Model Refinement Using Structure Decoys“. In BCB '23: 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3584371.3612952.
Der volle Inhalt der Quellehan, Chenzi. „AlphaFold2 protein structure prediction based on computer vision“. In International Conference on Biological Engineering and Medical Science (ICBIOMed2022), herausgegeben von Gary Royle und Steven M. Lipkin. SPIE, 2023. http://dx.doi.org/10.1117/12.2669377.
Der volle Inhalt der QuelleAbbas, Usman L., Jin Chen und Qing Shao. „Assessing Fairness of AlphaFold2 Prediction of Protein 3D Structures“. In BCB '23: 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3584371.3612943.
Der volle Inhalt der Quelle„Использование нейронной сети AlphaFold2 для улучшения результатов белок-белкового докинга“. In Теория систем, алгебраическая биология, искусственный интеллект: математические основы и приложения. Рос. акад. наук; Нац. акад. наук Беларуси; Нац. акад. наук Респ. Казахстан; Акад. наук Респ. Узбекистан., 2023. http://dx.doi.org/10.18699/sblai2023-26.
Der volle Inhalt der QuelleOyama, Yosuke, Akihiro Tabuchi und Atsushi Tokuhisa. „Accelerating AlphaFold2 Inference of Protein Three-Dimensional Structure on the Supercomputer Fugaku“. In HPDC '23: The 32nd International Symposium on High-Performance Parallel and Distributed Computing. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3589013.3596674.
Der volle Inhalt der QuelleManshour, Negin, Yang Yu, Wenyuan Qin, Fei He, Duolin Wang und Dong Xu. „Evaluating template-based and template-free protein-peptide complex structure prediction using AlphaFold2“. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9994883.
Der volle Inhalt der QuelleUeki, Takafumi, und Masahito Ohue. „Antibody Complementarity-Determining Region Sequence Design Using AlphaFold2 and Binding Affinity Prediction Model“. In 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). IEEE, 2023. http://dx.doi.org/10.1109/csce60160.2023.00350.
Der volle Inhalt der QuelleLiu, Zhe, Weihao Pan, Xuyang Zhen, Jisheng Liang, Wenxiang Cai, Kai Yuan und Guan Ning Lin. „Will AlphaFold2 Be Helpful in Improving the Accuracy of Single-sequence PPI Site Prediction?“ In 2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB). IEEE, 2022. http://dx.doi.org/10.1109/icbcb55259.2022.9802490.
Der volle Inhalt der QuelleAlshammari, Maytha, Jing He und Willy Wriggers. „Refinement of AlphaFold2 Models against Experimental Cryo-EM Density Maps at 4-6Å Resolution“. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995676.
Der volle Inhalt der QuelleLiang, Chengrui. „An analysis of the mechanism and prospect of AlphaFold2 model based on machine learning and neural network“. In International Conference on Biological Engineering and Medical Science (ICBIOMed2022), herausgegeben von Gary Royle und Steven M. Lipkin. SPIE, 2023. http://dx.doi.org/10.1117/12.2669676.
Der volle Inhalt der Quelle