Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Alphabet arithmetic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Alphabet arithmetic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Alphabet arithmetic"
Campbell, Jamie I. D., Yalin Chen, Kurtis Allen und Leah Beech. „Transfer of training in alphabet arithmetic“. Memory & Cognition 44, Nr. 8 (28.06.2016): 1288–300. http://dx.doi.org/10.3758/s13421-016-0631-x.
Der volle Inhalt der QuellePerl, Y., und L. Gabriel. „Arithmetic interpolation search for alphabet tables“. IEEE Transactions on Computers 41, Nr. 4 (April 1992): 493–99. http://dx.doi.org/10.1109/12.135562.
Der volle Inhalt der QuelleFias, Wim, Muhammet Ikbal Sahan, Daniel Ansari und Ian M. Lyons. „From Counting to Retrieving: Neural Networks Underlying Alphabet Arithmetic Learning“. Journal of Cognitive Neuroscience 34, Nr. 1 (01.12.2021): 16–33. http://dx.doi.org/10.1162/jocn_a_01789.
Der volle Inhalt der QuelleBiasizzo, Anton, Franc Novak und Peter Korošec. „A Multi–Alphabet Arithmetic Coding Hardware Implementation for Small FPGA Devices“. Journal of Electrical Engineering 64, Nr. 1 (01.01.2013): 44–49. http://dx.doi.org/10.2478/jee-2013-0006.
Der volle Inhalt der QuelleMahapatra, Sudipta, und Kuldeep Singh. „An FPGA-Based Implementation of Multi-Alphabet Arithmetic Coding“. IEEE Transactions on Circuits and Systems I: Regular Papers 54, Nr. 8 (August 2007): 1678–86. http://dx.doi.org/10.1109/tcsi.2007.902527.
Der volle Inhalt der QuelleDelaygue, É. „Arithmetic properties of Apéry-like numbers“. Compositio Mathematica 154, Nr. 2 (20.10.2017): 249–74. http://dx.doi.org/10.1112/s0010437x17007552.
Der volle Inhalt der QuelleMüller, Burkhard, und Jürgen Gehrke. „Acquisition and Use of Mental Operators: The Influence of Natural Order of Events“. Experimental Psychology 51, Nr. 1 (Januar 2004): 33–44. http://dx.doi.org/10.1027/1618-3169.51.1.33.
Der volle Inhalt der QuelleNatarajan, S., N. Ramadass und Ramana Y. V. Rao. „State-based dynamic multi-alphabet arithmetic coding for image compression“. Imaging Science Journal 57, Nr. 1 (Februar 2009): 30–36. http://dx.doi.org/10.1179/174313109x373648.
Der volle Inhalt der QuelleChen, Yalin, Alicia Orr und Jamie I. D. Campbell. „What is learned in procedural learning? The case of alphabet arithmetic.“ Journal of Experimental Psychology: Learning, Memory, and Cognition 46, Nr. 6 (Juni 2020): 1165–77. http://dx.doi.org/10.1037/xlm0000775.
Der volle Inhalt der QuelleLogan, Gordon D., und Stuart T. Klapp. „Automatizing alphabet arithmetic: I. Is extended practice necessary to produce automaticity?“ Journal of Experimental Psychology: Learning, Memory, and Cognition 17, Nr. 2 (März 1991): 179–95. http://dx.doi.org/10.1037/0278-7393.17.2.179.
Der volle Inhalt der QuelleDissertationen zum Thema "Alphabet arithmetic"
Strickland, Monica Kathleen. „The Effects of Self-evaluation and Response Restriction on Letter and Number Reversal in Young Children“. Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4542/.
Der volle Inhalt der QuelleRousset, Chouteau Stéphanie. „Apprentissage de l'addition : comptage ou récupération en mémoire ? Approches expérimentale et computationnelle“. Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALS027.
Der volle Inhalt der QuelleAddition, one of the fundamental operations in arithmetic, is among the first operations taught to children. Among the various forms of addition, those involving two single-digit operands, such as 5+3, are ubiquitous in daily life and often require fast mental calculations. To date, the cognitive mechanisms underlying the resolution of these operations remain poorly understood. Two major theoretical models are in opposition. Associationist theories (Ashcraft, 1982; Campbell & Graham, 1985; Logan, 1988; Siegler & Shrager, 1984) posit that learning leads to the retrieval of answers from memory. At the beginning of learning, children use an explicit counting procedure (e.g., 6...7...8) that creates a memory trace associating the problem with its solution. After numerous repetitions, the result can be retrieved directly from memory without requiring calculation. More recently, a theory proposes that learning leads to the automatization of counting for smaller additions (Barrouillet & Thevenot, 2013; Uittenhove et al., 2016; Thevenot & Barrouillet, 2016). Even after significant experience, the result is not retrieved from memory but is calculated using an ultra-fast and unconscious procedure that would scroll the mental number line. The objective of this thesis is to contribute to this field of research by exploring the cognitive mechanisms employed through both experimental and computational approaches. The experimental component aims to determine how counting and retrieval strategies operate during the learning of addition resolution. It also seeks to examine whether factors such as operand magnitude and problem structure can influence these strategies. The experimental component comprises two learning studies based on tasks similar to those of alphabet arithmetic and conducted with adults. The first study explores the automatization of additions by comparing two learning conditions, memorization and counting, using additions built from an artificial sequence, and shows that counting is still used by most participants, while others memorize larger problems. The second study examines the influence of learning material by comparing additions built from contiguous and non-contiguous sequences, demonstrating that the structure of the sequences also affects the strategies used by participants. The computational modeling component aims to explain and reproduce the strategic shifts observed between counting and memory retrieval. A first version of the model, based solely on counting acceleration, does not fully explain the experimental data. A new version of the model, incorporating a dynamic competition mechanism between counting and memory retrieval, more precisely simulates the transition between these two strategies depending on problem size and structure, as observed in the experiments. The results from the two approaches show that no single strategy prevails at the end of learning. The results are more nuanced, revealing that problem size and material structure influence the choice of strategies. Additionally, individual differences were observed, with some individuals favoring memory retrieval, while others continue to use counting procedures even after prolonged practice. These findings highlight the importance of proposing a flexible model to understand the mechanisms underlying the automatization of basic additions
Peng, Jen-Chun, und 彭仁俊. „Implementation of Adaptive Multi-alphabet Arithmetic Decoder“. Thesis, 2001. http://ndltd.ncl.edu.tw/handle/60501285706085764930.
Der volle Inhalt der Quelle國立交通大學
電機與控制工程系
89
Data compression played an important role in the data transmission and data storage. Arithmetic coding is an efficient loseless data compression technique and has been proposed in industrial standards. Traditionally, arithmetic coding applies certain specification for different types of data and results in average performance. To obtain the near-optimal performance, this thesis proposes a parameterized solution for adaptive arithmetic coding with a finite weighted history buffer. The thesis develops six probability models by tuning the size of history buffer and scaling weight. Our proposed decoder will employ one of the models for different files and allow users to set the selection of parameters. In addition to the parameterization, the thesis proposes a bit-wise binary searching algorithm to reduce the number of bit-compare operations. The reduction of operations can speed up our decoder significantly. As shown in the thesis, our decoder chip operates at 71.4 MHz clock rate and costs the area of 2.86*2.86 .
Bücher zum Thema "Alphabet arithmetic"
Fleming, Denise. Shout! Shout it out! New York: Henry Holt, 2011.
Den vollen Inhalt der Quelle findenĪraj, Afshār, und Markaz-i Dāʼirat al-Maʻārif-i Buzurg-i Islāmī (Iran), Hrsg. Shams al-ḥisāb al-Fakhrī. Tihrān: Markaz-i Dāʼirat-al-Maʻārif-i Buzurg-i Islāmī, 2008.
Den vollen Inhalt der Quelle findenManuel de Andrade de Figueiredo. Nova escola: Para aprender a ler, escrever e contar. Rio de Janeiro: Ministério da Cultura, Fundação Biblioteca Nacional, 2010.
Den vollen Inhalt der Quelle findenJuster, Norton. The annotated Phantom tollbooth. New York: Alfred A. Knopf, 2011.
Den vollen Inhalt der Quelle findenJuster, Norton. The Phantom Tollbooth. 3. Aufl. New York: Random House, 1996.
Den vollen Inhalt der Quelle findenJuster, Norton. The phantom tollbooth. 5. Aufl. New York: Alfred A. Knopf, 2011.
Den vollen Inhalt der Quelle findenJuster, Norton. The Phantom Tollbooth. New York, USA: Bullseye Books/Alfred A. Knopf, 1989.
Den vollen Inhalt der Quelle findenJuster, Norton. The Phantom Tollbooth. 5. Aufl. New York: Alfred A. Knopf, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Alphabet arithmetic"
Jeż, Artur, Anthony W. Lin, Oliver Markgraf und Philipp Rümmer. „Decision Procedures for Sequence Theories“. In Computer Aided Verification, 18–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37703-7_2.
Der volle Inhalt der QuelleStarchak, Mikhail R. „On the Existential Arithmetics with Addition and Bitwise Minimum“. In Lecture Notes in Computer Science, 176–95. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30829-1_9.
Der volle Inhalt der QuelleSmullyan, Raymond M. „Tarski’s Theorem for Arithmetic“. In Gödel's Incompleteness Theorems. Oxford University Press, 1992. http://dx.doi.org/10.1093/oso/9780195046724.003.0005.
Der volle Inhalt der QuelleTarski, Alfred. „On the Theory of Classes“. In Introduction to Logic and to the Methodology of the Deductive Sciences, 63–80. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195044720.003.0004.
Der volle Inhalt der QuelleMazur, Joseph. „Symbol Infancy“. In Enlightening Symbols. Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691173375.003.0012.
Der volle Inhalt der QuelleChandio, Asghar Ali, Zahid Hussain, Muhammad Saleem Vighio und Mehwish Leghari. „Interactive Learning System for Primary Schools using Tablet PC“. In Advances in Civil and Industrial Engineering, 446–71. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8803-2.ch020.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Alphabet arithmetic"
Apparaju, Rakesh, und Suneeta Agarwal. „An Arithmetic Coding Scheme by Converting the Multisymbol Alphabet to M-ary Alphabet“. In International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). IEEE, 2007. http://dx.doi.org/10.1109/iccima.2007.317.
Der volle Inhalt der QuelleGuo, Muling, Takahumi Oka, Shigeo Kato, Hiroshi Kajiwara und Naoto Kawamura. „Encoding of multi-alphabet sources by binary arithmetic coding“. In Electronic Imaging '99, herausgegeben von Kiyoharu Aizawa, Robert L. Stevenson und Ya-Qin Zhang. SPIE, 1998. http://dx.doi.org/10.1117/12.334610.
Der volle Inhalt der QuelleGomes, Jiovana Sousa, und Fabio Luis Livi Ramos. „High-Performance Design for the AV1 Multi - Alphabet Arithmetic Decoder“. In 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2021. http://dx.doi.org/10.1109/sbcci53441.2021.9529970.
Der volle Inhalt der QuelleBorodzhieva, Adriana. „MS EXCEL-BASED APPLICATION FOR ENCRYPTION AND DECRYPTION USING THE HILL CIPHER ON THE BASIS OF 2X2-MATRIX AND 64-SYMBOL ALPHABET“. In eLSE 2017. Carol I National Defence University Publishing House, 2017. http://dx.doi.org/10.12753/2066-026x-17-049.
Der volle Inhalt der QuelleAhmed, F., A. A. S. Awwal und P. Chen. „Experiment with the storage capacity and shift invariance of trinary associative memory for character recognition“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thx6.
Der volle Inhalt der QuelleSharma, Saurabh, Sonali Aatrai und Rajlakshmi Guha. „Impact of Anxiety on Eye Markers: Role of Visual Task Complexity“. In 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004746.
Der volle Inhalt der QuelleXiaohui Xue und Wen Gao. „High performance arithmetic coding for small alphabets“. In Proceedings DCC '97. Data Compression Conference. IEEE, 1997. http://dx.doi.org/10.1109/dcc.1997.582149.
Der volle Inhalt der Quelle