Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Alnus-Frankia symbiosis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Alnus-Frankia symbiosis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Alnus-Frankia symbiosis"

1

Anne-Emmanuelle, Hay, Boubakri Hasna, Buonomo Antoine, et al. "Control of Endophytic Frankia Sporulation by Alnus Nodule Metabolites." Molecular Plant-Microbe Interactions® 30, no. 3 (2017): 205–14. http://dx.doi.org/10.1094/mpmi-11-16-0235-r.

Der volle Inhalt der Quelle
Annotation:
A unique case of microbial symbiont capable of dormancy within its living host cells has been reported in actinorhizal symbioses. Some Frankia strains, named Sp+, are able to sporulate inside plant cells, contrarily to Sp− strains. The presence of metabolically slowed-down bacterial structures in host cells alters our understanding of symbiosis based on reciprocal benefits between both partners, and its impact on the symbiotic processes remains unknown. The present work reports a metabolomic study of Sp+ and Sp− nodules (from Alnus glutinosa), in order to highlight variabilities associated with in-planta sporulation. A total of 21 amino acids, 44 sugars and organic acids, and 213 secondary metabolites were detected using UV and mass spectrometric–based profiling. Little change was observed in primary metabolites, suggesting that in-planta sporulation would not strongly affect the primary functionalities of the symbiosis. One secondary metabolite (M27) was detected only in Sp+ nodules. It was identified as gentisic acid 5-O-β-d-xylopyranoside, previously reported as involved in plant defenses against microbial pathogens. This metabolite significantly increased Frankia in-vitro sporulation, unlike another metabolite significantly more abundant in Sp− nodules [M168 = (5R)-1,7-bis-(3,4-dihydroxyphenyl)-heptane-5-O-β-d-glucopyranoside]. All these results suggest that the plant could play an important role in the Frankia ability to sporulate in planta and allow us to discuss a possible sanction emitted by the host against less cooperative Sp+ symbionts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Markham, John H., and Chris P. Chanway. "Does past contact reduce the degree of mutualism in the Alnus rubra - Frankia symbiosis?" Canadian Journal of Botany 77, no. 3 (1999): 434–41. http://dx.doi.org/10.1139/b98-227.

Der volle Inhalt der Quelle
Annotation:
Although most vascular plants have symbiotic relationships with soil microbes, and there is an extensive theoretical literature on the evolution of mutualism, there has been little experimental examination of the evolution of mutualism between plants and their microbial symbionts. We inoculated red alder (Alnus rubra Bong.) seedlings from three high- and three low-elevation populations with crushed nodule suspensions containing the nitrogen fixing bacterium Frankia from either the parent trees (familiar strains) or the other plant population sampled within the parent watershed (unfamiliar strains). The inoculated seedlings were planted on three high- and three low-elevation sites. Growth was monitored over the second and third year following planting, after which the whole plants were harvested. The proportion of nitrogen derived from fixation was estimated from the ratio of stable nitrogen isotopes in the harvested leaves. On low-elevation sites, which had high soil nitrogen, plants with familiar Frankia strains were half the size and derived less fixed nitrogen from their symbionts compared with plants inoculated with unfamiliar Frankia strains. On high-elevation sites, which had low soil nitrogen, the type of inoculum had little effect on plant performance, although plants with familiar inoculum were consistently larger than plants with unfamiliar inoculum. These results suggest that the degree of mutualism in this symbiosis depends on environmental conditions and may decrease with time.Key words: coevolution, Frankia, Alnus rubra, mutualism, nitrogen fixation, symbiosis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pujic, Petar, Nicole Alloisio, Guylaine Miotello, et al. "The Proteogenome of Symbiotic Frankia alni in Alnus glutinosa Nodules." Microorganisms 10, no. 3 (2022): 651. http://dx.doi.org/10.3390/microorganisms10030651.

Der volle Inhalt der Quelle
Annotation:
Omics are the most promising approaches to investigate microbes for which no genetic tools exist such as the nitrogen-fixing symbiotic Frankia. A proteogenomic analysis of symbiotic Frankia alni was done by comparing those proteins more and less abundant in Alnus glutinosa nodules relative to N2-fixing pure cultures with propionate as the carbon source. There were 250 proteins that were significantly overabundant in nodules at a fold change (FC) ≥ 2 threshold, and 1429 with the same characteristics in in vitro nitrogen-fixing pure culture. Nitrogenase, SuF (Fe–Su biogenesis) and hopanoid lipids synthesis determinants were the most overabundant proteins in symbiosis. Nitrogenase was found to constitute 3% of all Frankia proteins in nodules. Sod (superoxide dismutase) was overabundant, indicating a continued oxidative stress, while Kats (catalase) were not. Several transporters were overabundant including one for dicarboxylates and one for branched amino acids. The present results confirm the centrality of nitrogenase in the actinorhizal symbiosis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mastronunzio, J. E., Y. Huang, and D. R. Benson. "Diminished Exoproteome of Frankia spp. in Culture and Symbiosis." Applied and Environmental Microbiology 75, no. 21 (2009): 6721–28. http://dx.doi.org/10.1128/aem.01559-09.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N2 fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wall, Luis Gabriel, and Kerstin Huss-Danell. "Regulation of nodulation in Alnus incana-Frankia symbiosis." Physiologia Plantarum 99, no. 4 (1997): 594–600. http://dx.doi.org/10.1111/j.1399-3054.1997.tb05362.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wall, Luis Gabriel, and Kerstin Huss-Danell. "Regulation of nodulation in Alnus incana-Frankia symbiosis*." Physiologia Plantarum 99, no. 4 (1997): 594–600. http://dx.doi.org/10.1034/j.1399-3054.1997.990411.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gabbarini, Luciano Andrés, and Luis Gabriel Wall. "Diffusible factors involved in early interactions of actinorhizal symbiosis are modulated by the host plant but are not enough to break the host range barrier." Functional Plant Biology 38, no. 9 (2011): 671. http://dx.doi.org/10.1071/fp11003.

Der volle Inhalt der Quelle
Annotation:
Nodulation kinetics were analysed in two nitrogen-fixing actinorhizal symbioses that show different pathways for infection: Alnus acuminata H. B. K., which is infected by Frankia ArI3, and Discaria trinervis (Hooker et Arnot) Reiche, which is infected by Frankia BCU110501. Both pairs are incompatible in cross-inoculation experiments. The dose–response effects in nodulation were studied in A. acuminata seedlings using different concentrations of compatible and incompatible bacteria in co-inoculation experiments. Restriction fragment length polymorphism PCR analysis and plant-trapping analysis showed no co-occupation in A. acuminata nodules when plants were co-inoculated with Frankia BCU110501 and Frankia ArI3. Despite the lack of co-occupation, the noninfective BCU110501 could modify the nodulation parameters of the non-host A. acuminata when infective ArI3 was present in the inoculum. The results suggest that although BCU110501 was not able to induce nodulation in A. acuminata, its interaction with the plant could induce autoregulation as if some level of infection or partial recognition could be achieved. We explored the possibility that physiological complementation of the heterologous Frankia BCU110501 for nodulation of A. acuminata originated in the homologous Frankia ArI3 in the presence of compatible root exudates. Despite the possibility of full activation between bacteria and the host, there was no co-infection of Frankia BCU110501 in Alnus or of Frankia ArI3 in Discaria either. These negative results suggest a physical recognition barrier in actinorhizal symbiosis that operates after early interactions, involving something other than root exudates and diffusible factors of bacterial or plant origin, regardless of the infection pathway.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Clawson, Michael L., Jeffrey Gawronski, and David R. Benson. "Dominance ofFrankiastrains in stands ofAlnus incanasubsp.rugosaandMyrica pensylvanica." Canadian Journal of Botany 77, no. 9 (1999): 1203–7. http://dx.doi.org/10.1139/b99-070.

Der volle Inhalt der Quelle
Annotation:
To address issues of dominance and diversity of Frankia spp. strains, we sequenced 16S rRNA genes from root nodules and strains collected from Alnus incana subsp. rugosa (Du Roi) R.T. Clausen and Myrica pensylvanica Loisel. stands. Of 22 strains isolated previously from A. incana, 16 had the same partial rDNA sequence; the remaining 6 strains composed five additional groups. The groups identified by 16S rDNA analysis corresponded to phenotypic groups established previously by one- and two-dimensional polyacrylamide gel analysis, colony and hyphal morphology, and carbon source utilization patterns. Dominance of one strain was also evident in nodules collected from a single M. pensylvanica stand. The dominant strain had a partial 16S rDNA sequence identical to that of Frankia alni strain CpI1.Key words: Frankia, Myrica, Alnus, actinorhizal, root nodules, nitrogen fixation, symbiosis, 16S rRNA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Alloisio, Nicole, Clothilde Queiroux, Pascale Fournier, et al. "The Frankia alni Symbiotic Transcriptome." Molecular Plant-Microbe Interactions® 23, no. 5 (2010): 593–607. http://dx.doi.org/10.1094/mpmi-23-5-0593.

Der volle Inhalt der Quelle
Annotation:
The actinobacteria Frankia spp. are able to induce the formation of nodules on the roots of a large spectrum of actinorhizal plants, where they convert dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living Frankia alni cells and on Alnus glutinosa nodule bacteria, using whole-genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia spp. genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to nitrogen fixation were highly induced, nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster), and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified, suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signaling processes, protein drug export, protein secretion, lipopolysaccharide, and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We also showed that this Frankia symbiotic transcriptome was highly similar among phylogenetically distant plant families Betulaceae and Myricaceae. Finally, comparison with rhizobia transcriptome suggested that F. alni is metabolically more active in symbiosis than rhizobia.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gabbarini, Luciano Andrés, and Luis Gabriel Wall. "Diffusible factors from Frankia modify nodulation kinetics in Discaria trinervis, an intercellular root-infected actinorhizal symbiosis." Functional Plant Biology 38, no. 9 (2011): 662. http://dx.doi.org/10.1071/fp11015.

Der volle Inhalt der Quelle
Annotation:
Frankia BCU110501 induces nitrogen-fixing root nodules in Discaria trinervis (Gillies ex Hook. & Arn.) Reiche (Rhamnaceae) via intercellular colonisation, without root hair deformation. It produces diffusible factors (DFs) that might be involved in early interactions with the D. trinervis roots, playing a role in the nodulation process. The induction of root nodule development in actinorhizal symbiosis would depend on the concentration of factors produced by the bacteria and the plant. A detailed analysis of nodulation kinetics revealed that these DFs produce changes at the level of initial rate of nodulation and also in nodulation profile. Diluted Frankia BCU110501 inoculum could be activated in less than 96 h by DFs produced by Frankia BCU110501 cells that had been previously washed. Biochemical characterisation showed that Frankia BCU110501 DFs have a molecular weight of <12 kDa, are negatively charged at pH 7.0 and seem to contain a peptide bond necessary for their activity. Frankia BCU110501, belonging to Frankia Clade 3, does not induce nodules in Alnus acuminata H.B.K. ssp. acuminata but is able to deform root hairs, as do Frankia strains from Clade 1. The root hair deforming activity of Frankia BCU110501 DFs show the same biochemical characteristics of the DFs involved in nodulation of D. trinervis. These results suggest that Frankia symbiotic factors have a basic structure regardless of the infection pathway of the host plant.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie