Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Allocation conjointe“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Allocation conjointe" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Allocation conjointe"
Ul Hassan Zardari, Noor, und Ian Cordery. „Determining Irrigators Preferences for Water Allocation Criteria Using Conjoint Analysis“. Journal of Water Resource and Protection 04, Nr. 05 (2012): 249–55. http://dx.doi.org/10.4236/jwarp.2012.45027.
Der volle Inhalt der QuelleHuxtable, Richard. „Logical separation? Conjoined twins, slippery slopes and resource allocation“. Journal of Social Welfare and Family Law 23, Nr. 4 (Januar 2001): 459–71. http://dx.doi.org/10.1080/09649060110079341.
Der volle Inhalt der QuelleDanesh, Ahmad, Fariba Asghari, Hojjat Zeraati, Kamran Yazdani, Saharnaz Nedjat, Mohammad-Ali Mansournia, Ali Jafarian und Akbar Fotouhi. „Public preferences for allocation of donated livers for transplantation: A conjoint analysis“. Clinical Ethics 11, Nr. 4 (07.07.2016): 176–81. http://dx.doi.org/10.1177/1477750916657662.
Der volle Inhalt der QuelleRashtchi, Rozita, Ramy H. Gohary und Halim Yanikomeroglu. „Conjoint Routing and Resource Allocation in OFDMA-Based D2D Wireless Networks“. IEEE Access 6 (2018): 18868–82. http://dx.doi.org/10.1109/access.2018.2816817.
Der volle Inhalt der QuelleStepanov, Sergey N., Juvent Ndayikunda und Margarita G. Kanishcheva. „Resource allocation model for LTE technology with functionality of NB-IoT and reservation“. T-Comm 15, Nr. 11 (2021): 69–76. http://dx.doi.org/10.36724/2072-8735-2021-15-11-69-76.
Der volle Inhalt der QuelleGhosh, Avijit, und C. Samuel Craig. „An Approach to Determining Optimal Locations for New Services“. Journal of Marketing Research 23, Nr. 4 (November 1986): 354–62. http://dx.doi.org/10.1177/002224378602300405.
Der volle Inhalt der QuelleSassi, Franco, David McDaid und Walter Ricciardi. „Conjoint analysis of preferences for cardiac risk assessment in primary care“. International Journal of Technology Assessment in Health Care 21, Nr. 2 (April 2005): 211–18. http://dx.doi.org/10.1017/s0266462305050282.
Der volle Inhalt der QuelleHare, Christopher. „LOSS ALLOCATION FOR MATERIALLY ALTERED CHEQUES“. Cambridge Law Journal 60, Nr. 1 (März 2001): 1–58. http://dx.doi.org/10.1017/s0008197301710616.
Der volle Inhalt der QuelleDuch, Raymond, Laurence S. J. Roope, Mara Violato, Matias Fuentes Becerra, Thomas S. Robinson, Jean-Francois Bonnefon, Jorge Friedman et al. „Citizens from 13 countries share similar preferences for COVID-19 vaccine allocation priorities“. Proceedings of the National Academy of Sciences 118, Nr. 38 (15.09.2021): e2026382118. http://dx.doi.org/10.1073/pnas.2026382118.
Der volle Inhalt der QuelleKumar, V. V., M. Tripathi, M. K. Pandey und M. K. Tiwari. „Physical programming and conjoint analysis-based redundancy allocation in multistate systems: A Taguchi embedded algorithm selection and control (TAS&C) approach“. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 223, Nr. 3 (29.06.2009): 215–32. http://dx.doi.org/10.1243/1748006xjrr210.
Der volle Inhalt der QuelleDissertationen zum Thema "Allocation conjointe"
Oueis, Jessica. „Gestion conjointe de ressources de communication et de calcul pour les réseaux sans fils à base de cloud“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM007/document.
Der volle Inhalt der QuelleMobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational efforts from the internet to the mobile edge. We adopt a local mobile edge cloud computing architecture, where small cells are empowered with computational and storage capacities. Mobile users’ offloaded computational tasks are executed at the cloud-enabled small cells. We propose the concept of small cells clustering for mobile edge computing, where small cells cooperate in order to execute offloaded computational tasks. A first contribution of this thesis is the design of a multi-parameter computation offloading decision algorithm, SM-POD. The proposed algorithm consists of a series of low complexity successive and nested classifications of computational tasks at the mobile side, leading to local computation, or offloading to the cloud. To reach the offloading decision, SM-POD jointly considers computational tasks, handsets, and communication channel parameters. In the second part of this thesis, we tackle the problem of small cell clusters set up for mobile edge cloud computing for both single-user and multi-user cases. The clustering problem is formulated as an optimization that jointly optimizes the computational and communication resource allocation, and the computational load distribution on the small cells participating in the computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency for higher system energy efficiency. In the multi-user case, the optimization problem is not convex. In order to compute a clustering solution, we propose a convex reformulation of the problem, and we prove that both problems are equivalent. With the goal of finding a lower complexity clustering solution, we propose two heuristic small cells clustering algorithms. The first algorithm is based on resource allocation on the serving small cells where tasks are received, as a first step. Then, in a second step, unserved tasks are sent to a small cell managing unit (SCM) that sets up computational clusters for the execution of these tasks. The main idea of this algorithm is task scheduling at both serving small cells, and SCM sides for higher resource allocation efficiency. The second proposed heuristic is an iterative approach in which serving small cells compute their desired clusters, without considering the presence of other users, and send their cluster parameters to the SCM. SCM then checks for excess of resource allocation at any of the network small cells. SCM reports any load excess to serving small cells that re-distribute this load on less loaded small cells. In the final part of this thesis, we propose the concept of computation caching for edge cloud computing. With the aim of reducing the edge cloud computing latency and energy consumption, we propose caching popular computational tasks for preventing their re-execution. Our contribution here is two-fold: first, we propose a caching algorithm that is based on requests popularity, computation size, required computational capacity, and small cells connectivity. This algorithm identifies requests that, if cached and downloaded instead of being re-computed, will increase the computation caching energy and latency savings. Second, we propose a method for setting up a search small cells cluster for finding a cached copy of the requests computation. The clustering policy exploits the relationship between tasks popularity and their probability of being cached, in order to identify possible locations of the cached copy. The proposed method reduces the search cluster size while guaranteeing a minimum cache hit probability
Ben, Slimane Jamila. „Allocation conjointe des canaux de fréquence et des créneaux de temps et routage avec QdS dans les réseaux de capteurs sans fil denses et étendus“. Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0224/document.
Der volle Inhalt der QuelleThe general context of the present memory is about the cross-layer optimization of wireless sensors networks based on ultra wide band technology UWB. The proposed solutions ensure the share and the efficient allocation of spectral and temporal resources, the optimization of the energy consumption and the support of multi-constraints quality of services QoS. The most challenging issue is providing a tradeoff between the resource efficiency and the multiconstrained QoS support. For this purpose, we proposed a new Wireless Hospital Sensor Network (WHSN) three-tiered architecture in order to support large-scale deployment and to improve the network performance. Then we designed a channel allocation scheme (UWBCAS,)and a prioritized multi-channel multi-time slot MAC protocol (PMCMTP) to enhance network performance and maximize the resource utilization. Finally, we proposed a joint duty cycle scheduling, resource allocation and multi-constrained QoS routing algorithm (JSAR) which simultaneously combines, a duty cycle scheduling scheme for energy saving, a resource allocation scheme for efficient use of frequency channels and time slots, and an heuristic for multi-constrained routing protocol
Sharara, Mahdi. „Resource Allocation in Future Radio Access Networks“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG024.
Der volle Inhalt der QuelleThis dissertation considers radio and computing resource allocation in future radio access networks and more precisely Cloud Radio Access Network (Cloud-RAN) and Open Radio Access Network (Open-RAN). In these architectures, the baseband processing of multiple base stations is centralized and virtualized. This permits better network optimization and allows for saving capital expenditure and operational expenditure. In the first part, we consider a coordination scheme between radio and computing schedulers. In case the computing resources are not sufficient, the computing scheduler sends feedback to the radio scheduler to update the radio parameters. While this reduces the radio throughput of the user, it guarantees that the frame will be processed at the computing scheduler level. We model this coordination scheme using Integer Linear Programming (ILP) with the objectives of maximizing the total throughput and users' satisfaction. The results demonstrate the ability of this scheme to improve different parameters, including the reduction of wasted transmission power. Then, we propose low-complexity heuristics, and we test them in an environment of multiple services with different requirements. In the second part, we consider the joint radio and computing resource allocation. Radio and computing resources are jointly allocated with the aim of minimizing energy consumption. The problem is modeled as a Mixed Integer Linear Programming Problem (MILP) and is compared to another MILP problem that maximizes the total throughput. The results demonstrate the ability of joint allocation to minimize energy consumption in comparison with the sequential allocation. Finally, we propose a low-complexity matching game-based algorithm that can be an alternative for solving the high-complexity MILP problem. In the last part, we investigate the usage of machine learning tools. First, we consider a deep learning model that aims to learn how to solve the coordination ILP problem, but with a much shorter time. Then, we consider a reinforcement learning model that aims to allocate computing resources for users to maximize the operator's profit
Soua, Ridha. „Wireless sensor networks in industrial environment : energy efficiency, delay and scalability“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-00978887.
Der volle Inhalt der QuelleZheng, Shuo. „Prise en compte des contraintes de canal dans les schémas de codage vidéo conjoint du source-canal“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT005/document.
Der volle Inhalt der QuelleSoftCast based Linear Video Coding (LVC) schemes have been emerged in the last decade as a quasi analog joint-source-channel alternative to classical video coding schemes. Theoretical analyses have shown that analog coding is better than digital coding in a multicast scenario when the channel signal-to-noise ratios (C-SNR) differ among receivers. LVC schemes provide in such context a decoded video quality at different receivers proportional to their C-SNR.This thesis considers first the channel precoding and decoding matrix design problem for LVC schemes under a per-subchannel power constraint. Such constraint is found, e.g., on Power Line Telecommunication (PLT) channels and is similar to per-antenna power constraints in multi-antenna transmission system. An optimal design approach is proposed, involving a multi-level water filling algorithm and the solution of a structured Hermitian Inverse Eigenvalue problem. Three lower-complexity alternative suboptimal algorithms are also proposed. Extensive experiments show that the suboptimal algorithms perform closely to the optimal one and can reduce significantly the complexity. The precoding matrix design in multicast situations also has been considered.A second main contribution consists in an impulse noise mitigation approach for LVC schemes. Impulse noise identification and correction can be formulated as a sparse vector recovery problem. A Fast Bayesian Matching Pursuit (FBMP) algorithm is adapted to LVC schemes. Subchannels provisioning for impulse noise mitigation is necessary, leading to a nominal video quality decrease in absence of impulse noise. A phenomenological model (PM) is proposed to describe the impulse noise correction residual. Using the PM model, an algorithm to evaluate the optimal number of subchannels to provision is proposed. Simulation results show that the proposed algorithms significantly improve the video quality when transmitted over channels prone to impulse noise
Soua, Ridha. „Wireless sensor networks in industrial environment : energy efficiency, delay and scalability“. Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066029.
Der volle Inhalt der QuelleSome industrial applications require deterministic and bounded gathering delays. We focus on the joint time slots and channel assignment that minimizes the time of data collection and provides conflict-free schedules. This assignment allows nodes to sleep in any slot where they are not involved in transmissions. Hence, these schedules save the energy budjet of sensors. We calculate the minimum number of time slots needed to complete raw data convergecast for a sink equipped with multiple radio interfaces and heterogeneous nodes traffic. We also give optimal schedules that achieve the optimal bounds. We then propose MODESA, a centralized joint slots and channels assignment algorithm. We prove the optimality of MODESA in specific topologies. Through simulations, we show that MODESA is better than TMCP, a centralized subtree based scheduling algorithm. We improve MODESA with different strategies for channels allocation. In addition, we show that the use of a multi-path routing reduces the time of data collection .Nevertheless, the joint time slot and channels assignment must be able to adapt to changing traffic demands of the nodes (alarms, additional requests for temporary traffic) . We propose AMSA , an adaptive joint time slots and channel assignment based on incremental technical solution. To address the issue of scalability, we propose, WAVE, a distributed scheduling algorithm for convergecat that operates in centralized or distributed mode. We show the equivalence of schedules provided by the two modes
Kumar, Abhishek. „A tolerance allocation framework using fuzzy comprehensive evaluation and decision support processes“. Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37212.
Der volle Inhalt der QuelleBourg, Salomé. „The evolution of mechanism underlying the allocation of resources and consequences on the shape of trade-offs in multicellular organisms“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1266.
Der volle Inhalt der QuelleIn order to grow, survive or reproduce, all organisms need energy, usually acquired through diet. However, this food resource is present both in fluctuating and limited quantities in the environment, forcing living beings to compromise and thus to divide their energy between their different functions. These evolutionary compromises, visible at the scale of a population in the form of a negative relationship between traits, are called trade-off. Trade-offs have long been considered as the result of a differential resource allocation and as immutable. Therefore, allocating more energy to a trait such as survival necessarily reduces the amount that can be redistributed to other traits, such as fecundity or growth. It is noteworthy that the differential allocation of resources is a process regulated by an endocrine mechanism, itself genetically coded and thereby able to evolve. The aim of my PhD thesis was to understand, theoretically, (i) how the evolution of the endocrine mechanism impacts the shape of trade-offs and (ii) how the shape of trade-offs itself evolves.To do so, I first developed evolutionary models where the allocation of resources is governed by an endocrine system. This system can evolve under the effect of mutations that impact both the expression and the conformation of hormones and receptors constituting this endocrine system. Thanks to this model, I show that the negative relationships between traits can evolve and that their shape strongly depends on a parameter rarely considered: the cost of storage. In a second step, I studied the impact of temporal variability in food abundance on the endocrine mechanisms responsible for the differential allocation of resources.Lastly, my thesis project includes a component complementary to the theoretical part, which attempts to empirically test certain of the expressed predictions. I conducted an artificial selection experiment in which I controlled the topology of a fitness landscape, thus allowing to select combinations of traits not belonging to the phenotypic relationship usually observed. This experiment, implemented in Drosophila melanogaster for 10 generations, has shown that evolution can indeed occur in this context, thereby partially challenging our understanding of the mechanisms underlying the expression of phenotypic traits
Parrein, Benoît. „Description multiple de l'information par transformation Mojette“. Phd thesis, Université de Nantes, 2001. http://tel.archives-ouvertes.fr/tel-00300613.
Der volle Inhalt der QuelleLes codages à description multiple offrent une alternative à la transmission hiérarchisée de l'information en brisant la scalabilité de la source aux abords du canal. Dans cette thèse, nous proposons une méthode originale de description multiple qui réalise une protection différenciée de chaque niveau hiérarchique de la source en fonction des propriétés dynamiques du canal de transmission.
La transformation Mojette (transformation de Radon discrète exacte) est une transformation unitaire qui permet de partager un volume de données en un ensemble plus ou moins redondant de projections équivalentes. L'évolution de ce type d'opérateur initialement utilisé dans un espace continu pour la reconstruction tomographique étend le concept de support d'image à celui de mémoire tampon géométrique pour données multimédias. Ce codage à description multiple, généralisé à N canaux, autorise la reconstruction de la mémoire initiale de manière déterministe par des sous-ensembles de projections dont le nombre caractérise le niveau de protection. Ce schéma est particulièrement adapté au mode de transport par paquets sans contrôle d'intégrité extensible du canal de transmission. La hiérarchie de la source est dans ce cas communiquée sous forme transparente pour le canal via des descriptions banalisées.
L'évaluation du codage est effectuée en comparant les débits engendrés avec ceux d'un code MDS (Maximum Distance Separable) qui fournissent une solution optimale dans le nombre de symboles nécessaires au décodage. La relaxation des propriétés MDS dans un code (1+ε)MDS avec la transformation Mojette demande une légère augmentation de débit au profit d'une complexité réduite.
L'application sur des schémas de compression d'images valide concrètement l'adaptation possible des sources actuelles à un canal de type best-effort. L'utilisation dans un environnement distribué (micro-paiement, stockage distribué de données multimédia) illustre en outre un partage sécurisé de l'information.
En perspectives de ce travail, nous avons abordé l'intégration de cette méthode dans un protocole de transmission scalable multimédia et étudié une version probabiliste du système.
Ouro-Bodi, Ouro-Gnaou. „Les Etats et la protection internationale de l'environnement : la question du changement climatique“. Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0228/document.
Der volle Inhalt der QuelleClimate change has become the scourge environmental concern and mobilizes more theinternational community. The outcome of this mobilization remains probably the implementation ofinternational climate change regime for which the Climate Convention and the Kyoto Protocol are the legalbases. This system is innovative in that it sets quantified emission reduction commitments for greenhouse gasemissions (GHG) for polluters States, but also in that it establishes mechanisms known as of “flexibility”whose implementation is accompanied by a control based on a Committee known as of “compliance”. Butdespite all this normative production, it is regrettable that today the international climate regime is a realfailure. Indeed, if the mobilization of states is no doubt, however, the same states that have voluntarily agreedto engage deliberately refuse to honour their commitments for essentially political, economic and strategicreasons. This work therefore aims to shed light on the causes of this failure by developing a mixed record ofthe first Kyoto commitment ended period in 2012, and offers prospects for a legal regime of the post-Kyotoclimate and efficient, able to be up to the challenges
Buchteile zum Thema "Allocation conjointe"
Rao, Vithala R., und Henrik Sattler. „Measurement of Price Effects with Conjoint Analysis: Separating Informational and Allocative Effects of Price“. In Conjoint Measurement, 47–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24713-5_2.
Der volle Inhalt der QuelleRao, Vithala R., und Henrik Sattler. „Measurement of Price Effects with Conjoint Analysis: Separating Informational and Allocative Effects of Price“. In Conjoint Measurement, 47–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-06392-7_2.
Der volle Inhalt der QuelleRao, Vithala R., und Henrik Sattler. „Measurement of Price Effects with Conjoint Analysis: Separating Informational and Allocative Effects of Price“. In Conjoint Measurement, 47–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-06395-8_2.
Der volle Inhalt der QuelleRao, Vithala R., und Henrik Sattler. „Measurement of Price Effects with Conjoint Analysis: Separating Informational and Allocative Effects of Price“. In Conjoint Measurement, 31–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71404-0_2.
Der volle Inhalt der QuelleDaum, Diane L., und Jennifer A. Stoll. „Employee Preferences“. In Employee Surveys and Sensing, 153–70. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190939717.003.0010.
Der volle Inhalt der QuelleAnnas, George J. „Minerva v. National Health Agency, 53 U.S. 2d 333 (2020)“. In Standard Of Care, 218–33. Oxford University PressNew York, NY, 1993. http://dx.doi.org/10.1093/oso/9780195072471.003.0018.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Allocation conjointe"
Kumar, Abhishek, Lorens Goksel und Seung-Kyum Choi. „Tolerance Allocation of Assemblies Using Fuzzy Comprehensive Evaluation and Decision Support Processes“. In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29023.
Der volle Inhalt der QuelleBelahcène, Khaled, Vincent Mousseau und Anaëlle Wilczynski. „Combining Fairness and Optimality when Selecting and Allocating Projects“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/6.
Der volle Inhalt der Quelle