Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „All-solid batteries“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "All-solid batteries" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "All-solid batteries"
HAYASHI, Akitoshi, und Atsushi SAKUDA. „Development of All-solid-state Batteries“. Journal of The Institute of Electrical Engineers of Japan 141, Nr. 9 (01.09.2021): 579–82. http://dx.doi.org/10.1541/ieejjournal.141.579.
Der volle Inhalt der QuelleNotten, Peter H. L. „3D-integrated all-solid-state batteries“. Europhysics News 42, Nr. 3 (Mai 2011): 24–29. http://dx.doi.org/10.1051/epn/2011303.
Der volle Inhalt der QuelleBhardwaj, Ravindra Kumar, und David Zitoun. „Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries“. Batteries 9, Nr. 2 (03.02.2023): 110. http://dx.doi.org/10.3390/batteries9020110.
Der volle Inhalt der QuelleAmaresh, S., K. Karthikeyan, K. J. Kim, Y. G. Lee und Y. S. Lee. „Aluminum based sulfide solid lithium ionic conductors for all solid state batteries“. Nanoscale 6, Nr. 12 (2014): 6661–67. http://dx.doi.org/10.1039/c4nr00804a.
Der volle Inhalt der QuelleHAYASHI, Akitoshi, Atsushi SAKUDA und Masahiro TATSUMISAGO. „Development of Solid Electrolytes for All-Solid-State Batteries“. NIPPON GOMU KYOKAISHI 92, Nr. 11 (2019): 430–34. http://dx.doi.org/10.2324/gomu.92.430.
Der volle Inhalt der QuelleDirican, Mahmut, Chaoyi Yan, Pei Zhu und Xiangwu Zhang. „Composite solid electrolytes for all-solid-state lithium batteries“. Materials Science and Engineering: R: Reports 136 (April 2019): 27–46. http://dx.doi.org/10.1016/j.mser.2018.10.004.
Der volle Inhalt der QuelleSmdani, Gulam, Md Wahidul Hasan, Amir Abdul Razzaq und Weibing Xing. „A Novel Solid State Polymer Electrolyte for All Solid State Lithium Batteries“. ECS Meeting Abstracts MA2024-01, Nr. 1 (09.08.2024): 113. http://dx.doi.org/10.1149/ma2024-011113mtgabs.
Der volle Inhalt der QuelleHatzell, Kelsey. „Chemo-Mechanics in All Solid State Composite Cathodes“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 469. http://dx.doi.org/10.1149/ma2022-024469mtgabs.
Der volle Inhalt der QuelleChen, Zonghai. „(Invited) Formation of Solid/Solid Interface for All Solid State Batteries“. ECS Meeting Abstracts MA2020-01, Nr. 2 (01.05.2020): 290. http://dx.doi.org/10.1149/ma2020-012290mtgabs.
Der volle Inhalt der QuelleSun, Zhouting, Mingyi Liu, Yong Zhu, Ruochen Xu, Zhiqiang Chen, Peng Zhang, Zeyu Lu, Pengcheng Wang und Chengrui Wang. „Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries“. Sustainability 14, Nr. 15 (25.07.2022): 9090. http://dx.doi.org/10.3390/su14159090.
Der volle Inhalt der QuelleDissertationen zum Thema "All-solid batteries"
Johnson, D. R. „The microstructure of all-solid-state batteries“. Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375262.
Der volle Inhalt der QuelleGeiß, Matthias [Verfasser]. „Sacrificial interlayers for all-solid-state batteries / Matthias Geiß“. Gießen : Universitätsbibliothek, 2021. http://d-nb.info/1230476318/34.
Der volle Inhalt der QuelleQuemin, Elisa. „Exploring solid-solid interfaces in Li6PS5Cl-based cathode composites for all solid state batteries“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS501.
Der volle Inhalt der QuelleWhile Lithium-ion batteries dominate portable devices, growing safety and energy density demands in electric vehicle batteries have led to the exploration of "beyond Li-ion" technology. All-Solid-State Batteries (ASSBs) have emerged as a promising alternative to Li-ion batteries. Thus, this doctoral research focuses on overcoming challenges hindering the practical implementation of ASSBs, with a specific emphasis on cathode composites. The investigation revolves around a common composite comprising Li6PS5Cl solid electrolyte (SE) and NMC active material (AM). The research unveils the degradation mechanisms within ASSBs, governed by SE/Carbon additive and SE/AM interfaces. It is observed that capacity deterioration, occurring below 3.6 V vs. Li-In/In, is primarily attributed to SE/Carbon interfaces. Conversely, elevating the voltage to 3.9 V shifts the primary degradation source to SE/AM interfaces. Then, the adverse effects of carbon additives on the ionic conduction of composites are demonstrated, particularly when exceeding 2 wt. % VGCF. Moreover, the study delves into the electronic conductivity of carbon-free composites using innovative in situ monitoring. This reveals Li-induced alterations hindering electronic conductivity, especially at high charge levels, notably in high Ni-content NMC. Furthermore, the influence of particle size and morphology on electronic percolation is extensively examined, advocating for minimal VGCF to enhance kinetics and stability. Strategies for effectively incorporating carbon additives while mitigating long-term capacity loss are explored, encompassing assembly pressure, loading, formation cycles, temperature, and carbonate coating. By mixing these optimal conditions, an enhanced cathode composite is introduced, holding promising potential for the progression of All-Solid-State Battery technology
Yada, Chihiro. „Studies on electrode/solid electrolyte interface of all-solid-state rechargeable lithium batteries“. 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144024.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(工学)
甲第12338号
工博第2667号
新制||工||1377(附属図書館)
24174
UT51-2006-J330
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 江口 浩一, 教授 田中 功
学位規則第4条第1項該当
Sun, Bing. „Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries“. Doctoral thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-248084.
Der volle Inhalt der QuelleShao, Yunfan. „Highly electrochemical stable quaternary solid polymer electrolyte for all-solid-state lithium metal batteries“. University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522332577785545.
Der volle Inhalt der QuelleKoç, Tuncay. „In search of the best solid electrolyte-layered oxide pair in all-solid-state batteries“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS535.
Der volle Inhalt der QuelleAll-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could theoretically enable achieving nearly 70 and 40 % increase in volumetric (Wh/l) and gravimetric (Wh/kg) energy densities, respectively, as well as enhanced safety compared to lithium-ion battery technology. To this end, the last decade has witnessed the development of ASSBs mainly through sulfide-based SEs pertaining to their favorable intrinsic properties. However, such advancements were not straightforward to unlock high-performing practical ASSBs because of complex interfacial decomposition reactions taking place at both negative and positive electrodes, leading to a worsening cycling life. Focusing on the positive electrode, this calls for a better understanding of electrochemical/chemical compatibility of SEs that is sorely needed for real-world applications.This work aims to provide answers regarding the best SE-layered oxide pair in composite cathode for ASSBs. By conducting a systematic study on the effect of nature of SEs in battery performances, we show that Li6PS5Cl performances rival that of Li3InCl6, both outperforming β-Li3PS4 and this, independently of the synthesis route. This is preserved when assembling solid-state cells since Li6PS5Cl pairing with layered oxide cathode shows the best retention upon cycling. This study also unravels that halides react with sulfides in hetero-structured cell design, hence resulting in a rapid capacity decay upon cycling stemming from interfacial decomposition reactions. To eliminate such interfacial degradation process, we suggest a surface engineering strategy that helps to alleviate the surface deterioration, unlocking highly performing ASSBs. Eventually, combined electrochemical, structural and spectroscopic analysis demonstrate that Li3InCl6 cannot withstand at higher oxidation potentials, resulting in decomposition products in contrast to what the theoretical calculations predicted
Su, Zhongyi. „Performance enhancement of all-solid-state batteries by optimizing the electrolyte through advanced microscopy and tomography techniques“. Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22112.
Der volle Inhalt der QuelleNaboulsi, Agathe. „Composite organic-inorganic membrane as new electrolyte in all solid-state battery“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS451.
Der volle Inhalt der QuelleThe development of all-solid-state batteries is essential if we are to make a success of the ecological transition and the deployment of all-electric vehicles. One way of developing this sector is to produce an all-solid electrolyte (SE). Poly(ethylene glycol)-based polymer SEs have the advantage of being adaptable to current Li-ion battery manufacturing processes. Unfortunately, their conductivity remains limited (10-6 - 10-9 S.cm-1) at ambient temperature. Interestingly, inorganic SEs, such as Li7La3Zr2O12, are good ionic conductors (10-3 S.cm-1), but they require costly and energy-intensive shaping processes. This thesis aimed to develop composite SEs that combine the advantages of these two materials. The work focused on the design of a high-performance composite SE and the study of transport mechanisms at the interface of these two materials. An in-depth study of a polymer SE was carried out in order to optimize its synthesis from liquid and commercial monomers. Taking advantage of this synthesis design, various composite SE shaping processes (low-temperature sintering, electro-assisted extrusion, evaporation casting) were explored in order to control the mixing of the two materials and their interface. Electrochemical impedance spectroscopy has been widely used to understand transport phenomena in composite SEs
Saha, Sujoy. „Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries“. Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.
Der volle Inhalt der QuelleGrowing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
Bücher zum Thema "All-solid batteries"
Kulova, Tatiana. All-Solid-state Thin-film Lithium-ion Batteries. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenKotobuki, Masashi. Ceramic Electrolytes for All-Solid-State Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.
Den vollen Inhalt der Quelle findenAL. Ceramic Electrolytes All-Solid-state L: Ceramic Electrolytes for All-Solid-state Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.
Den vollen Inhalt der Quelle findenAll Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenSkundin, Alexander, Tatiana Kulova, Alexander Rudy und Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenSkundin, Alexander, Tatiana Kulova, Alexander Rudy und Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenSkundin, Alexander, Tatiana Kulova, Alexander Rudy und Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenKulova, Tatiana. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. CRC Press LLC, 2021.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "All-solid batteries"
Tofield, Bruce C. „Future Prospects for All-Solid-State Batteries“. In Solid State Batteries, 423–41. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_29.
Der volle Inhalt der QuelleIlango, P. Robert, Jeevan Kumar Reddy Modigunta, Abhilash Karuthedath Parameswaran, Zdenek Sofer, G. Murali und Insik In. „Novel Design Aspects of All-Solid-State Batteries“. In Solid State Batteries, 157–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_6.
Der volle Inhalt der QuelleAjith, K., P. Christopher Selvin, K. P. Abhilash, Nithyadharseni Palaniyandy, P. Adlin Helen und G. Somasundharam. „Recycling of All-Solid-State Lithium-Ion Batteries“. In Solid State Batteries, 245–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_9.
Der volle Inhalt der QuelleRatsoma, M. S., K. Makgopa, K. D. Modibane und K. Raju. „Prospective Cathode Materials for All-Solid-State Batteries“. In Solid State Batteries, 83–125. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_4.
Der volle Inhalt der QuellePriyanka, P., B. Nalini und P. Nithyadharseni. „Basic Aspects of Design and Operation of All-Solid-State Batteries“. In Solid State Batteries, 1–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_1.
Der volle Inhalt der QuelleAbhilash, K. P., P. Nithyadharseni, P. Sivaraj, D. Lakshmi, Seema Agarwal, Bhekie B. Mamba und Zdenek Sofer. „Future Challenges to Address the Market Demands of All-Solid-State Batteries“. In Solid State Batteries, 275–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_10.
Der volle Inhalt der QuelleNakamura, Hideya, und Satoru Watano. „Dry Coating of Electrode Particle with Solid Electrolyte for Composite Electrode of All-Solid-State Battery“. In Next Generation Batteries, 93–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_9.
Der volle Inhalt der QuelleAsakura, Ryo, Arndt Remhof und Corsin Battaglia. „Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries“. In ACS Symposium Series, 353–93. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1413.ch014.
Der volle Inhalt der QuelleAbhilash, K. P., P. Sivaraj, Bhupendar Pal, P. Nithyadharseni, B. Nalini, Sudheer Kumar Yadav, Robert Illango und Zdenek Sofer. „Advanced Characterization Techniques to Unveil the Dynamics of Challenging Nano-scale Interfaces in All-Solid-State Batteries“. In Solid State Batteries, 219–44. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_8.
Der volle Inhalt der QuelleOkumura, Toyoki. „Powder-Process-Based Fabrication of Oxide-Based Bulk-Type All-Solid-State Batteries“. In Next Generation Batteries, 221–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "All-solid batteries"
Ferreira, Patryck, und Shu-Xia Tang. „Quintuple Thermal Model for All-Solid-State Batteries and Temperature Estimation through a Cascaded Thermal-Electrochemical Model“. In 2024 IEEE Conference on Control Technology and Applications (CCTA), 716–21. IEEE, 2024. http://dx.doi.org/10.1109/ccta60707.2024.10666604.
Der volle Inhalt der QuelleMaohua, Chen, Rayavarapu Prasada Rao und Stefan Adams. „All-Solid-State Lithium Batteries Using Li6PS5Br Solid Electrolyte“. In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_154.
Der volle Inhalt der QuelleBeutl, Alexander, Ningxin Zhang, Marcus Jahn und Maria Nestoridi. „All-solid state batteries for space exploration“. In 2019 European Space Power Conference (ESPC). IEEE, 2019. http://dx.doi.org/10.1109/espc.2019.8931978.
Der volle Inhalt der QuelleTHANGADURAI, V., J. SCHWENZEI und W. WEPPNER. „DEVELOPMENT OF ALL-SOLID-STATE LITHIUM BATTERIES“. In Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0084.
Der volle Inhalt der QuelleFinsterbusch, Martin. „Oxide-Electrolyte Based All-Solid-State Batteries“. In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.088.
Der volle Inhalt der QuelleSong, Taeseup, Jehyun Lee, Jiwoon Kim, Minsung Kim, Myungju Woo, Seungwoo Lee, Jaeik Kim et al. „Electrode Structure Engineering for All Solid State Batteries“. In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.216.
Der volle Inhalt der QuelleSousa, R., J. F. Ribeiro, J. A. Sousa, L. M. Goncalves und J. H. Correia. „All-solid-state batteries: An overview for bio applications“. In 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518400.
Der volle Inhalt der QuelleHu, Zhixiong, Huangqing Ye, Jiahui Chen, Xian-Zhu Fu, Rong Sun und Ching-Ping Wong. „Li0.43La0.56Ti0.95Ge0.05O3/PEO composite solid electrolytes for flexible all-solid-state lithium batteries“. In 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018. http://dx.doi.org/10.1109/icept.2018.8480741.
Der volle Inhalt der QuelleLiu, Hongru, und Ceng Li. „Recent Developments of Solid-State Electrolytes for All-Solid-State Lithium Metal Batteries“. In 2022 3rd International Conference on Clean and Green Energy Engineering (CGEE). IEEE, 2022. http://dx.doi.org/10.1109/cgee55282.2022.9976528.
Der volle Inhalt der QuelleLiu, Wei, Ryan Milcarek, Kang Wang und Jeongmin Ahn. „Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries“. In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "All-solid batteries"
Zhang, Pu. All Solid State Batteries Enabled by Multifunctional Electrolyte Materials. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/1906484.
Der volle Inhalt der QuelleYe, Jianchao. Printing of All Solid-State Lithium Batteries (BMR FY20Q1 Task 4). Office of Scientific and Technical Information (OSTI), Januar 2020. http://dx.doi.org/10.2172/1631527.
Der volle Inhalt der QuelleDoeff, Marca. Flexible All Solid State Lithium Batteries Made by Roll-to-Roll Freeze-Casting. Office of Scientific and Technical Information (OSTI), Juli 2019. http://dx.doi.org/10.2172/1569485.
Der volle Inhalt der QuelleYe, J. FY24Q1 VTO Quarter Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), Februar 2024. http://dx.doi.org/10.2172/2429648.
Der volle Inhalt der QuelleYe, J., und M. Wood. VTO FY23Q4 Quarterly Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2429659.
Der volle Inhalt der QuelleYe, J., A. Orhan und E. Ramos. VTO FY23Q3 Quarterly Report on 3D Printing of All-Solid-State Lithium batteries. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2429657.
Der volle Inhalt der QuelleYersak, Thomas. Hot Pressing of Reinforced Li-NMC All-Solid State Batteries with Sulfide Glass Electrolyte. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2246589.
Der volle Inhalt der QuelleYe, J., A. Orhan, M. Wood und E. Ramos. VTO FY23 Annual Progress Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2429655.
Der volle Inhalt der QuelleNarayanan, Badri, Hui Wang, Gamini Sumanasekera und Jacek Jasinski. Predictive Engineering of Interfaces and Cathodes for High-Performance All Solid-State Lithium-Sulfur Batteries. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1971763.
Der volle Inhalt der QuelleDoeff, Marca. Composite Cathode Architectures Made By Freeze-Casting for All Solid State Lithium Batteries: CRADA Final Report. Office of Scientific and Technical Information (OSTI), Februar 2023. http://dx.doi.org/10.2172/1923547.
Der volle Inhalt der Quelle