Dissertationen zum Thema „Alkali metal – carbon interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-23 Dissertationen für die Forschung zum Thema "Alkali metal – carbon interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kautz, Jr David Joseph. „Investigation of Alkali Metal-Host Interactions and Electrode-Electrolyte Interfacial Chemistries for Lean Lithium and Sodium Metal Batteries“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103946.
Der volle Inhalt der QuelleDoctor of Philosophy
The ever-increasing demand for high energy storage in personal electronics, electric vehicles, and grid energy storage has driven for research to safely enable alkali metal (Li and Na) anodes for practical energy storage applications. Key research efforts have focused on developing alkali metal composite anodes, as well as improving the electrode-electrolyte interfacial chemistries. A fundamental understanding of the electrode interactions with the electrolyte or host materials is necessary to progress towards safer batteries and better battery material design for long-term applications. Improving the interfacial interactions between the host-guest or electrode-electrolyte interfaces allows for more efficient charge transfer processes to occur, reduces interfacial resistance, and improves overall stability within the battery. As a result, there is great potential in understanding the host-guest and electrode-electrolyte interactions for the design of longer-lasting and safer batteries. This dissertation focuses on probing the interfacial chemistries of the battery materials to enable "lean" alkali metal composite anodes and improve electrode stability through electrolyte interactions. The anode-host interactions are first explored through preliminary design development for "lean" alkali composite anodes using carbon nanofiber (CNF) electrodes. The effect on increasing the crystallinity of the CNF host on the Li- and Na-CNF interactions for enhanced electrochemical performance and stability is then investigated. In an effort to improve the capabilities of Na batteries, the electrode-electrolyte interactions of the cathode- and anode-electrolyte interfacial chemistries using sodium borate salts are probed using electrochemical and X-ray analysis. Overall, this dissertation explores how the interfacial interactions affect, and improve, battery performance and stability. This work provides insights for understanding alkali metal-host and electrode-electrolyte properties and guidance for potential future research of the stabilization for Li- and Na-metal batteries.
Pulkkinen, E. (Elina). „Chemical modification of single-walled carbon nanotubes via alkali metal reduction“. Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526212449.
Der volle Inhalt der QuelleTiivistelmä Hiilinanoputket ovat ainutlaatuisten ominaisuuksiensa vuoksi lupaava materiaali moniin sovelluksiin, mutta liukenemattomuus ja epäreaktiivisuus haittaavat niiden tehokasta hyödyntämistä. Käytettävyyttä voidaan parantaa kemiallisella modifioinnilla. Tässä työssä yksiseinäisiä hiilinanoputkia modifioitiin Birch-pelkistyksellä, joka perustuu putken pinnan pelkistykseen nestemäiseen ammoniakkiin solvatoituneella alkalimetallin valenssielektronilla. Pelkistyksessä hiilinanoputkesta muodostuu anioni, joka reagoi elektrofiilin kanssa johtaen funktionaalisten ryhmien kovalenttiseen sitoutumiseen putken pintaan. Tässä työssä hiilinanoputkia aryloitiin käyttämällä aryylihalideja elektrofiilinä tai vedytettiin käyttämällä alkoholia. Aluksi tavoitteena oli hiilinanoputkien modifiointi sellaiseen muotoon, että niitä voitaisiin käyttää polystyreenin täyteaineena. Viittä aryylihalidia käyttämällä havaittiin, että elektrofiilin rakenne vaikutti funktionalisoinnin määrään ja putkien liukoisuuteen polystyreeni-tolueeni-liuokseen. 1-Kloori-4-etenyylibentseenillä saavutettiin onnistunein arylointi ja paras liukoisuus. Työn toisessa osassa luovuttiin ammoniakin käytöstä siihen liittyvien rajoitteiden ja haittojen vuoksi. Keskityttiin hiilinanoputkien alkalimetallipelkistyksen tutkimiseen uudessa liuottimessa, 1-metoksi-2-(2-metoksietoksi)etaanissa (diglyymi). Mallireaktioina käytettiin arylointia 4-jodibentsoehapolla tai 4-klooribentsoehapolla ja vedytystä alkoholilla. Ammoniakin korvaaminen diglyymillä yksinkertaisti ja tehosti funktionalisointia. Reaktiot suoritettiin eri alkalimetalleilla (Li, Na tai K). Naftaleenia tai 1-tert-butyyli-4-(4-tert-butyylifenyyli)bentseeniä käytettiin elektronien solvatoinnin parantamiseksi. Elektrofiilin rakenne vaikutti funktionalisointiin siten, että aryylihalidi johti huomattavasti onnistuneempaan funktionalisointiin kuin alkoholi. Alkalimetallin ja elektroninkantajamolekyylin vaikutus vaihteli elektrofiilin mukaan. Litiumin käyttö 1-tert-butyyli-4-(4-tert-butyylifenyyli)bentseenin kanssa johti onnistuneimpaan vedytykseen. Kaliumin käyttö naftaleenin kanssa johti onnistuneimpaan arylointiin. Hiilinanoputkien liukoisuus vaihteli elektrofiilin mukaan. Arylointi paransi selkeästi hiilinanoputkien liukoisuutta veteen, etanoliin, metanoliin ja dimetyyliformamidiin. Vedytyksen vaikutus liukoisuuteen oli vähäisempi
Mirkelamoglu, Burcu. „Carbon Monoxide Oxidation Under Oxidizing And Reducing Conditions With Alkali-metal And Palladium Doped Tin Dioxide“. Phd thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607509/index.pdf.
Der volle Inhalt der QuellePavlenko, Ekaterina. „Probing interaction and dispersion of carbon nanotubes in metal and polymer matrices“. Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2586/.
Der volle Inhalt der QuelleThe incorporation of carbon nanotubes (CNTs) into polymers and metals modifies their intrinsic properties. Dispersing CNTs uniformly in a matrix remains challenging due to strong tube agglomeration. Raman spectroscopy is a compelling technique to detect the presence of CNTs and their interaction with the environment. In this work, Raman spectroscopy is applied in association with other techniques to investigate CNTs in a metallic or polymer matrix. Doping with superacids, analysis of defects in friction wear and CNT dispersion are investigated. Statistical analysis of Raman images are used to generate histograms of Raman bands maps in order to estimate the amount of CNTs and their dispersion. The diffusion of a Poly (Ether Ether Ketone) PEEK thermoplastic polymer into agglomerated carbon nanotubes when annealing on the surface of a polymer sheet is studied by Raman imaging and transmission electron microscopy. Electronic transport measurements as a function of temperature and CNT concentration show high electrical conductivity consistent with the formation of a uniform percolating CNT network
Ayed, Othman. „Etude des interactions entre atomes alcalins (li, na, k) et monoxyde de carbone en matrices de gaz rares : analyse en spectroscopie vibrationnelle et calcul quantiques de quelques complexes“. Paris 6, 1987. http://www.theses.fr/1987PA066117.
Der volle Inhalt der QuelleWong, Chun-yuen. „Ruthenium-carbon bonding interaction synthesis and spectroscopic studies of ruthenium-acetylide, -carbene, -vinylidene and -allenylidene complexes“. Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31040858.
Der volle Inhalt der QuelleAdeyemo, Adedunni D. „Interaction of Metal Oxides with Carbon Monoxide and Nitric Oxide for Gas Sensing Applications“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1332475552.
Der volle Inhalt der QuelleWong, Chun-yuen, und 黃駿弦. „Ruthenium-carbon bonding interaction synthesis and spectroscopic studies of ruthenium-acetylide, -carbene, -vinylidene and -allenylidene complexes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31040858.
Der volle Inhalt der QuelleHowlader, M. B. H. „A study of the interaction of some cationic transition-metal compounds with carbon monoxide and nucleophiles“. Thesis, University of South Wales, 1993. https://pure.southwales.ac.uk/en/studentthesis/a-study-of-the-interaction-of-some-cationic-transitionmetal-compounds-with-carbon-monoxide-and-nucleophiles(c583f7ce-c2b1-4c57-9726-128f4017dacd).html.
Der volle Inhalt der QuelleRichard, Brandon Demar. „Thermal Infrared Reflective Metal Oxide Sol-Gel Coatings for Carbon Fiber Reinforced Composite Structures“. Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4569.
Der volle Inhalt der QuelleShariati, Masumeh-Nina. „Electronic and Geometric Structure of Phthalocyanines on Metals“. Doctoral thesis, Uppsala universitet, Yt- och gränsskiktsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173505.
Der volle Inhalt der QuelleAbee, Mark Winfield. „Interaction of Acid/Base Probe Molecules with Specific Features on Well-Defined Metal Oxide Single-Crystal Surfaces“. Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/29011.
Der volle Inhalt der QuellePh. D.
Zhao, Teng. „Development of new cathodic interlayers with nano-architectures for lithium-sulfur batteries“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275684.
Der volle Inhalt der QuelleSaoud, Khaled Mohammad Eqab. „Carbon Monoxide Oxidation on Nanoparticle Catalysts and Gas Phase Reactions of Small Molecules and Volatile Organics with Metal Cations“. VCU Scholars Compass, 2005. http://scholarscompass.vcu.edu/etd/1372.
Der volle Inhalt der QuelleKikkawa, Soichi. „The Design of Active Sites for Selective Catalytic Conversion of Carbon Dioxide“. Doctoral thesis, Kyoto University, 2020. http://hdl.handle.net/2433/253303.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(工学)
甲第22467号
工博第4728号
新制||工||1738(附属図書館)
京都大学大学院工学研究科分子工学専攻
(主査)教授 田中 庸裕, 教授 江口 浩一, 教授 佐藤 啓文
学位規則第4条第1項該当
Doctor of Philosophy (Engineering)
Kyoto University
DFAM
Xu, Zhenxin. „Development of new macroscopic carbon materials for catalytic applications“. Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF005/document.
Der volle Inhalt der QuelleNowadays, macroscopic carbon materials are facing an increasing number of applications in catalysis, either as supports or directly as metal-free catalysts on their own. However, it is still challenging to develop hierarchical carbon-based catalyst support or catalyst using a much simple synthesis process. In the quest for novel structured carbon materials for heterogeneous catalysis we explored the potential of commercial carbon/graphite felt (CF/GF). The aim of the work described in this thesis has been the development of GF and CF monolith as metal-free catalyst for gas-phase oxidation reactions and as catalyst support, notably for palladium, for liquid-phase hydrogenation reactions, and their roles in the reaction performance of these catalysts. Due to their inert chemistry surface with inappropriate wettability, a prerequisite for such a study was to activate the origin ones. Therefore, well-rounded modified GFs and CFs were synthesized with tailored physic-chemical properties by a series of chemical treatment processes, such as oxidation, amination, thiolation, nitrogen- and sulfur-doping. The partial oxidation of hydrogen sulfide into elemental sulfur and selective hydrogenation of α, β-unsaturated cinnamaldehyde, as the sensitive test reactions to the influence of the catalyst properties on activity and selectivity, combined with characterization techniques, were chosen to investigate the effect of functionalized carbon materials on the catalytic behavior
Pankhurst, James Richard. „Complexes of Schiff-base macrocycles and donor-expanded dipyrrins for catalysis and uranyl reduction“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28887.
Der volle Inhalt der QuelleBoudouvas, Denis. „Effet du potassium sur un catalyseur composite Fe-Co-C en synthèse d'hydrocarbures“. Grenoble INPG, 1989. http://www.theses.fr/1989INPG0092.
Der volle Inhalt der QuelleHuang, Hsien-Wei, und 黃獻緯. „Alkali metal decorated carbon ring based molecular materials with boron and nitrogen substitution for hydrogen storage: A computational study“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/95575851289792733561.
Der volle Inhalt der Quelle中原大學
化學研究所
102
We report a computational study on hydrogen storage media consisting of alkali-metal (Li, Na, K, Li+, Na+, K+) atom and aromatic carbon ring based (benzene, coronene) molecular materials. We use two major and reliable computational method: B3LYP/6-311++g(2d,2p) &; MP2/6-311++g(2d,2p) to calculate our materials. Doping some boron or nitrogen atoms into carbon ring is our strategy to enhance the bonding ability between metal and carbon ring. Our calculations show that the systems with positive charge are better than neutral on hydrogen adsorption process because of its charge transfer. Finally, according to our calculations, the maximum hydrogen storage capacity can reach 11.85 wt %, it has already shoot the target of U.S. DoE. In the future, we hope the information will be useful for extending the study of graphene-based system for hydrogen storage.
Meng-Tsung, Chiang, und 江孟宗. „Potential Energy Surface Calculations for the Collisions of an Alkali or Alkaline Earth Metal Diatomic Molecule with Carbon Containing Free Radicals“. Thesis, 2003. http://ndltd.ncl.edu.tw/handle/79612827227970242047.
Der volle Inhalt der Quelle中國文化大學
應用化學研究所
91
Abstract In this research, we discuss the collision reactions of Li2 + CH and Be2 + CH. The potential energy surface calculation is at the level of HF/CASSCF, in which the basis set for all atoms is cc-p VQZ. In Li2 + CH and Be2 + CH collision reactions, we calculate the PES for the 179° and 89° collision angles. For Li2 + CH, we found that both 1A’ and 1A” states are Li2(X1Σg+) + CH(X2Π) at the far distance, while 2A’ and 2A” are Li2(b3Πu) + CH(X2Π) and Li2(a3u+) +CH(X2Π), respectively. In the collision reactions of Be2 + CH, 1A’ and 1A” are ground states Be2(X1g+) + CH(X2Π), while 2A’ and 2A” states are Be2(13g) + CH(X2Π) at the far distance. We also found that 1A’ , 2A’, 1A” and 2A” can form intermediates at the near distance at both collision angles in both cases. Because the energy gaps between the excited state and the ground state intermediates are all small, so non-adiabatic transitions may take place to form the ground state product.
Yu, Tseng Chiung, und 曾瓊裕. „Potential Energy Surfaces Calculations for the Collisions of an Alkali or Alkaline Earth Metal Atom with Small Molecules or Carbon Containing Free Radicals“. Thesis, 2003. http://ndltd.ncl.edu.tw/handle/79509899147696416690.
Der volle Inhalt der Quelle中國文化大學
應用化學研究所
91
In this study, we reported the properties at M* + CH and M* + C2H2, where M is either an alkali(Li)or alkaline(Be)metal atom. Electronic energies along the proposed reaction coordinates have been calculated at the CASSCF level using the ROOS basis set. Li(22P) + CH(X2Π) → LiC + H and Li(22P) + CH (X2Π)→ LiH + C are both endothermic on the triplet surface in our study. For the Be(23P) + CH → BeC + H, Be 2p orbital may have a π-overlap with CH(X2Π) px or py orbital to produce a stable BeCH intermediate. For the insertion reaction of M *+ C2H2 (where M is Li or Be), the alkaline earth metal (Be) may be able to transition from 2A’ to 1A’, due to a small energy gap between them and this is an exothermic reaction. Transition between 2A’ and 1A’ is not likely to occur due to a large energy gap.
Ghosh, Anupama. „Investigations Of Graphene And Open-Framework Metal Carboxylates“. Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2181.
Der volle Inhalt der QuelleKey, Julian D. V. „Development of aqueous ion-intercalation battery systems for high power and bulk energy storage“. 2013. http://hdl.handle.net/11394/3581.
Der volle Inhalt der QuelleAqueous ion-intercalation batteries (AIB’s) have the potential to provide both high power for hybrid-electric transport, and low cost bulk energy storage for electric grid supply. However, a major setback to AIB development is the instability of suitable ionintercalation anode material in aqueous electrolyte. To counter this problem, the use of activated carbon (AC) (a supercapacitor anode) paired against the low cost ionintercalation cathode spinel LiMn2O4 (LMO) provides a stable alternative. This thesis comprises two novel areas of investigation concerning: (1) the development of the AC/LMO cell for high power applications, and (2) the introduction of PbSO4 as a high capacity alternative anode material paired against LMO for low cost bulk energy storage. The study on AC/LMO explores the electrode combination’s practical specific energy and power capability at high P/E (power to energy ratio) of 50:1 suitable for hybrid electric vehicle batteries. To study the relationship between electrode material loading density, active material performance, and current collector mass contribution, a specially designed cell was constructed for galvanic cycling of different thicknesses of electrode. Between a loading density range of 25 – 100 mg, ~50 mg of total active material between two 1 cm2 current collectors produced the highest 50:1 P/E ratio values of 4 Wh/kg and 200 W/kg, constituting a 4-fold reduction of the active material values of thin films at 50:1 P/E. The cycling potentials of the individual electrodes revealed that doublings of electrode film loading density increased the LMO electrode’s polarization and voltage drop to similar levels as doublings in applied current density. However, by increasing the charging voltage from 1.8 V to 2.2 V, 6 Wh/kg and 300 W/kg was obtainable with minimal loss of energy efficiency. Finally a large-format cell of a calculated 3 Ah capacity at 50:1 P/E was constructed and tested. The cell produced ~60% of the anticipated capacity due to a suspected high level of resistance in the electrode contact points. The overall conclusion to the study was that AC/LMO holds promise for high power applications, and that future use of higher rate capability forms of LMO offers a promising avenue for further research. v The second part of this thesis presents the development of a novel cell chemistry, PbSO4/LMO, that has yet to be reported elsewhere in existing literature. The cell uses aqueous pH 7, 1 M, Li2SO4 electrolyte, and forms an electrode coupling where the PbSO4 anode charge/discharge is analogous to that in Pb-acid batteries. The average discharge voltage of the cell was 1.4 V and formed a flat charge/discharge plateau. The use of a low cost carbon coating method to encapsulate PbSO4 microparticles had a marked improvement on cell performance, and compared to uncoated PbSO4 improved both rate capability and specific capacity of the material. The active materials of the carbon-coated PbSO4/LMO cell produced a specific energy 51.1 Wh/kg, which, if a 65% yield is possible for a practical cell format, equals 38.4 Wh/kg, which is 15 Wh/kg higher than AC/LMO bulk storage cells at 23 Wh/kg, but lower than Pb-acid batteries at ~25-50 Wh/kg. Interestingly, the specific capacity of PbSO4 was 76 mAh/g compared to 100 mAh/g in Pb-acid cells. The predicted cost of the cell, providing a 65% value of the active material specific energy for a practical cell can be realized, is on par with Pb-acid battery technology and, importantly, uses 2.3 × less Pb/kWh. The cycling stability achieved thus far is promising, but will require testing over comparable cycle life periods to commercial batteries, which could be anywhere between 5 – 15 years.