Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Alkali metal – carbon interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Alkali metal – carbon interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Alkali metal – carbon interaction"
Zaporotskova, Irina V., Natalya P. Boroznina, Evgeniy S. Dryuchkov, Tatyana S. Shek, Yulia V. Butenko und Pavel A. Zaporotskov. „Surface functionalization of CNTs by a nitro group as a sensor device element: theoretical research“. Image Journal of Advanced Materials and Technologies 6, Nr. 2 (2021): 113–21. http://dx.doi.org/10.17277/jamt.2021.02.pp.113-121.
Der volle Inhalt der QuelleBalakrishnan, Vimal K., Julian M. Dust, Gary W. vanLoon und Erwin Buncel. „Catalytic pathways in the ethanolysis of fenitrothion, an organophosphorothioate pesticide. A dichotomy in the behaviour of crown/cryptand cation complexing agents“. Canadian Journal of Chemistry 79, Nr. 2 (01.02.2001): 157–73. http://dx.doi.org/10.1139/v01-006.
Der volle Inhalt der QuelleRondeau, Philippe, Sandrine Sers, Dhanjay Jhurry und Frederic Cadet. „Sugar Interaction with Metals in Aqueous Solution: Indirect Determination from Infrared and Direct Determination from Nuclear Magnetic Resonance Spectroscopy“. Applied Spectroscopy 57, Nr. 4 (April 2003): 466–72. http://dx.doi.org/10.1366/00037020360626023.
Der volle Inhalt der QuelleBuncel, Erwin, Ruby Nagelkerke und Gregory RJ Thatcher. „Alkali metal ion catalysis in nucleophilic displacement by ethoxide ion on p-nitrophenyl phenylphosphonate: Evidence for multiple metal ion catalysis“. Canadian Journal of Chemistry 81, Nr. 1 (01.01.2003): 53–63. http://dx.doi.org/10.1139/v02-202.
Der volle Inhalt der QuelleBoroznina, Natalia, Irina Zaporotskova, Sergey Boroznin und Evgeniy Dryuchkov. „Sensors Based on Amino Group Surface-Modified CNTs“. Chemosensors 7, Nr. 1 (05.03.2019): 11. http://dx.doi.org/10.3390/chemosensors7010011.
Der volle Inhalt der QuelleOswald, Steffen, Franziska Thoss, Martin Zier, Martin Hoffmann, Tony Jaumann, Markus Herklotz, Kristian Nikolowski et al. „Binding Energy Referencing for XPS in Alkali Metal-Based Battery Materials Research (II): Application to Complex Composite Electrodes“. Batteries 4, Nr. 3 (01.08.2018): 36. http://dx.doi.org/10.3390/batteries4030036.
Der volle Inhalt der QuelleArmstrong, David R., Helena S. Emerson, Alberto Hernán-Gómez, Alan R. Kennedy und Eva Hevia. „New supramolecular assemblies in heterobimetallic chemistry: synthesis of a homologous series of unsolvated alkali-metal zincates“. Dalton Trans. 43, Nr. 38 (2014): 14229–38. http://dx.doi.org/10.1039/c4dt01131g.
Der volle Inhalt der QuelleDunn, Edward J., Robert Y. Moir, Erwin Buncel, J. Garfield Purdon und Robert A. B. Bannard. „Metal ion catalysis in nucleophilic displacement reactions at carbon, phosphorus, and sulfur centers. II. Metal ion catalysis in the reaction of p-nitrophenyl diphenylphosphinate with alkali metal phenoxides in ethanol“. Canadian Journal of Chemistry 68, Nr. 10 (01.10.1990): 1837–45. http://dx.doi.org/10.1139/v90-286.
Der volle Inhalt der QuellePlatek-Mielczarek, Anetta, Elzbieta Frackowiak und Krzysztof Fic. „Specific carbon/iodide interactions in electrochemical capacitors monitored by EQCM technique“. Energy & Environmental Science 14, Nr. 4 (2021): 2381–93. http://dx.doi.org/10.1039/d0ee03867a.
Der volle Inhalt der QuelleWei, Li Hong, Na Zhang, Tian Hua Yang und Lei Wang. „Effects of Sewage Sludge on Combustion of Loading Alkali Metal Pulverized Coal“. Advanced Materials Research 550-553 (Juli 2012): 2315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.2315.
Der volle Inhalt der QuelleDissertationen zum Thema "Alkali metal – carbon interaction"
Kautz, Jr David Joseph. „Investigation of Alkali Metal-Host Interactions and Electrode-Electrolyte Interfacial Chemistries for Lean Lithium and Sodium Metal Batteries“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103946.
Der volle Inhalt der QuelleDoctor of Philosophy
The ever-increasing demand for high energy storage in personal electronics, electric vehicles, and grid energy storage has driven for research to safely enable alkali metal (Li and Na) anodes for practical energy storage applications. Key research efforts have focused on developing alkali metal composite anodes, as well as improving the electrode-electrolyte interfacial chemistries. A fundamental understanding of the electrode interactions with the electrolyte or host materials is necessary to progress towards safer batteries and better battery material design for long-term applications. Improving the interfacial interactions between the host-guest or electrode-electrolyte interfaces allows for more efficient charge transfer processes to occur, reduces interfacial resistance, and improves overall stability within the battery. As a result, there is great potential in understanding the host-guest and electrode-electrolyte interactions for the design of longer-lasting and safer batteries. This dissertation focuses on probing the interfacial chemistries of the battery materials to enable "lean" alkali metal composite anodes and improve electrode stability through electrolyte interactions. The anode-host interactions are first explored through preliminary design development for "lean" alkali composite anodes using carbon nanofiber (CNF) electrodes. The effect on increasing the crystallinity of the CNF host on the Li- and Na-CNF interactions for enhanced electrochemical performance and stability is then investigated. In an effort to improve the capabilities of Na batteries, the electrode-electrolyte interactions of the cathode- and anode-electrolyte interfacial chemistries using sodium borate salts are probed using electrochemical and X-ray analysis. Overall, this dissertation explores how the interfacial interactions affect, and improve, battery performance and stability. This work provides insights for understanding alkali metal-host and electrode-electrolyte properties and guidance for potential future research of the stabilization for Li- and Na-metal batteries.
Pulkkinen, E. (Elina). „Chemical modification of single-walled carbon nanotubes via alkali metal reduction“. Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526212449.
Der volle Inhalt der QuelleTiivistelmä Hiilinanoputket ovat ainutlaatuisten ominaisuuksiensa vuoksi lupaava materiaali moniin sovelluksiin, mutta liukenemattomuus ja epäreaktiivisuus haittaavat niiden tehokasta hyödyntämistä. Käytettävyyttä voidaan parantaa kemiallisella modifioinnilla. Tässä työssä yksiseinäisiä hiilinanoputkia modifioitiin Birch-pelkistyksellä, joka perustuu putken pinnan pelkistykseen nestemäiseen ammoniakkiin solvatoituneella alkalimetallin valenssielektronilla. Pelkistyksessä hiilinanoputkesta muodostuu anioni, joka reagoi elektrofiilin kanssa johtaen funktionaalisten ryhmien kovalenttiseen sitoutumiseen putken pintaan. Tässä työssä hiilinanoputkia aryloitiin käyttämällä aryylihalideja elektrofiilinä tai vedytettiin käyttämällä alkoholia. Aluksi tavoitteena oli hiilinanoputkien modifiointi sellaiseen muotoon, että niitä voitaisiin käyttää polystyreenin täyteaineena. Viittä aryylihalidia käyttämällä havaittiin, että elektrofiilin rakenne vaikutti funktionalisoinnin määrään ja putkien liukoisuuteen polystyreeni-tolueeni-liuokseen. 1-Kloori-4-etenyylibentseenillä saavutettiin onnistunein arylointi ja paras liukoisuus. Työn toisessa osassa luovuttiin ammoniakin käytöstä siihen liittyvien rajoitteiden ja haittojen vuoksi. Keskityttiin hiilinanoputkien alkalimetallipelkistyksen tutkimiseen uudessa liuottimessa, 1-metoksi-2-(2-metoksietoksi)etaanissa (diglyymi). Mallireaktioina käytettiin arylointia 4-jodibentsoehapolla tai 4-klooribentsoehapolla ja vedytystä alkoholilla. Ammoniakin korvaaminen diglyymillä yksinkertaisti ja tehosti funktionalisointia. Reaktiot suoritettiin eri alkalimetalleilla (Li, Na tai K). Naftaleenia tai 1-tert-butyyli-4-(4-tert-butyylifenyyli)bentseeniä käytettiin elektronien solvatoinnin parantamiseksi. Elektrofiilin rakenne vaikutti funktionalisointiin siten, että aryylihalidi johti huomattavasti onnistuneempaan funktionalisointiin kuin alkoholi. Alkalimetallin ja elektroninkantajamolekyylin vaikutus vaihteli elektrofiilin mukaan. Litiumin käyttö 1-tert-butyyli-4-(4-tert-butyylifenyyli)bentseenin kanssa johti onnistuneimpaan vedytykseen. Kaliumin käyttö naftaleenin kanssa johti onnistuneimpaan arylointiin. Hiilinanoputkien liukoisuus vaihteli elektrofiilin mukaan. Arylointi paransi selkeästi hiilinanoputkien liukoisuutta veteen, etanoliin, metanoliin ja dimetyyliformamidiin. Vedytyksen vaikutus liukoisuuteen oli vähäisempi
Mirkelamoglu, Burcu. „Carbon Monoxide Oxidation Under Oxidizing And Reducing Conditions With Alkali-metal And Palladium Doped Tin Dioxide“. Phd thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607509/index.pdf.
Der volle Inhalt der QuellePavlenko, Ekaterina. „Probing interaction and dispersion of carbon nanotubes in metal and polymer matrices“. Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2586/.
Der volle Inhalt der QuelleThe incorporation of carbon nanotubes (CNTs) into polymers and metals modifies their intrinsic properties. Dispersing CNTs uniformly in a matrix remains challenging due to strong tube agglomeration. Raman spectroscopy is a compelling technique to detect the presence of CNTs and their interaction with the environment. In this work, Raman spectroscopy is applied in association with other techniques to investigate CNTs in a metallic or polymer matrix. Doping with superacids, analysis of defects in friction wear and CNT dispersion are investigated. Statistical analysis of Raman images are used to generate histograms of Raman bands maps in order to estimate the amount of CNTs and their dispersion. The diffusion of a Poly (Ether Ether Ketone) PEEK thermoplastic polymer into agglomerated carbon nanotubes when annealing on the surface of a polymer sheet is studied by Raman imaging and transmission electron microscopy. Electronic transport measurements as a function of temperature and CNT concentration show high electrical conductivity consistent with the formation of a uniform percolating CNT network
Ayed, Othman. „Etude des interactions entre atomes alcalins (li, na, k) et monoxyde de carbone en matrices de gaz rares : analyse en spectroscopie vibrationnelle et calcul quantiques de quelques complexes“. Paris 6, 1987. http://www.theses.fr/1987PA066117.
Der volle Inhalt der QuelleWong, Chun-yuen. „Ruthenium-carbon bonding interaction synthesis and spectroscopic studies of ruthenium-acetylide, -carbene, -vinylidene and -allenylidene complexes“. Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31040858.
Der volle Inhalt der QuelleAdeyemo, Adedunni D. „Interaction of Metal Oxides with Carbon Monoxide and Nitric Oxide for Gas Sensing Applications“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1332475552.
Der volle Inhalt der QuelleWong, Chun-yuen, und 黃駿弦. „Ruthenium-carbon bonding interaction synthesis and spectroscopic studies of ruthenium-acetylide, -carbene, -vinylidene and -allenylidene complexes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31040858.
Der volle Inhalt der QuelleHowlader, M. B. H. „A study of the interaction of some cationic transition-metal compounds with carbon monoxide and nucleophiles“. Thesis, University of South Wales, 1993. https://pure.southwales.ac.uk/en/studentthesis/a-study-of-the-interaction-of-some-cationic-transitionmetal-compounds-with-carbon-monoxide-and-nucleophiles(c583f7ce-c2b1-4c57-9726-128f4017dacd).html.
Der volle Inhalt der QuelleRichard, Brandon Demar. „Thermal Infrared Reflective Metal Oxide Sol-Gel Coatings for Carbon Fiber Reinforced Composite Structures“. Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4569.
Der volle Inhalt der QuelleBücher zum Thema "Alkali metal – carbon interaction"
Maynard, Kevin John. Adsorption of carbon dioxide and carbon monoxide on alkali metal predosed silver surfaces. 1989.
Den vollen Inhalt der Quelle findenDierolf, Volkmar. Electronic Defect States in Alkali Halides: Effects Of Interaction With Molecular Ions. Springer, 2010.
Den vollen Inhalt der Quelle findenElectronic Defect States in Alkali Halides: Effects of Interaction with Molecular Ions (Springer Tracts in Modern Physics). Springer, 2003.
Den vollen Inhalt der Quelle findenHowlader, M. B. H. A study of the interaction of some cationic transition-metal compounds with carbon monoxide and nucleophiles. 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Alkali metal – carbon interaction"
Kanoh, Hirofumi, und Hongchao Luo. „CHAPTER 4. Alkali-metal-carbonate-based CO2 Adsorbents“. In Post-combustion Carbon Dioxide Capture Materials, 206–58. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788013352-00206.
Der volle Inhalt der QuelleHüttinger, K. J., und R. Minges. „Alkali Metal Catalyzed Water Vapour Gasification of Carbon Using Mineral Catalyst Raw Materials“. In Carbon and Coal Gasification, 197–212. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4382-7_7.
Der volle Inhalt der QuelleSosa-Torres, Martha E., und Peter M. H. Kroneck. „10. Interaction of Cyanide with Enzymes Containing Vanadium, Manganese, Non-Heme Iron, and Zinc“. In Metal-Carbon Bonds in Enzymes and Cofactors, 363–93. Cambridge: Royal Society of Chemistry, 2009. http://dx.doi.org/10.1039/9781847559333-00363.
Der volle Inhalt der QuellePerevertailo, V. M., und O. B. Loginova. „Contact Interaction in Carbon-Metal Systems for Joining and Integration“. In Ceramic Integration and Joining Technologies, 193–229. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118056776.ch7.
Der volle Inhalt der QuelleYang, Xiao Bao, und Jun Ni. „Alkali Atoms Intercalating Induced Metal-Semiconductor and Semiconductor-Semiconductor Transitions in Carbon Nanotubes“. In Solid State Phenomena, 1003–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1003.
Der volle Inhalt der QuelleFantucci, Piercarlo, Vlasta Bonačić-Koutecký und Jaroslav Koutecký. „Ab Initio Configuration Interaction Study of Electronic and Geometric Structure of Alkali Metal Clusters“. In Proceedings of the First Donegani Scientific Workshop on Strategies for Computer Chemistry, 79–91. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2599-1_8.
Der volle Inhalt der QuellePaul, Jared, Phillip Page, Philip Sauers, Katherine Ertel, Christina Pasternak, William Lin und Mariusz Kozik. „Transition-Metal-Substituted Heteropoly Anions in Nonpolar Solvents — Structures and Interaction with Carbon Dioxide“. In Nanostructure Science and Technology, 205–15. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47933-8_17.
Der volle Inhalt der QuelleMurrell, L. L., N. C. Dispenziere, R. T. K. Baker und J. J. Chludzinski. „Evidence of a Metal-Surface Phase Oxide Interaction for Re on WOxSupported on Activated Carbon“. In ACS Symposium Series, 195–99. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0298.ch019.
Der volle Inhalt der QuellePodlech, J. „Using Alkali Metal Cyanides“. In Three Carbon-Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives, 1. Georg Thieme Verlag KG, 2004. http://dx.doi.org/10.1055/sos-sd-019-00204.
Der volle Inhalt der QuelleSubramanian, L. R. „Using Alkali Metal Cyanides“. In Three Carbon-Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives, 1. Georg Thieme Verlag KG, 2004. http://dx.doi.org/10.1055/sos-sd-019-00132.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Alkali metal – carbon interaction"
Béguin, F., L. Duclaux, K. Méténier, E. Frackowiak, J. P. Salvetat, J. Conard, S. Bonnamy und P. Lauginie. „Alkali-metal intercalation in carbon nanotubes“. In ELECTRONIC PROPERTIES OF NOVEL MATERIALS--SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES. ASCE, 1999. http://dx.doi.org/10.1063/1.59857.
Der volle Inhalt der QuelleMaltsev, Dmitry S., Vladimir A. Volkovich, Ilya B. Polovov und Andrey V. Chukin. „The interaction of scandium fluoride with alkali metal fluorides“. In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002931.
Der volle Inhalt der QuelleMerritt, Jeremy M., Jiande Han, Terry Chang und Michael C. Heaven. „Theoretical investigations of alkali metal: rare gas interaction potentials“. In SPIE LASE: Lasers and Applications in Science and Engineering, herausgegeben von Steven J. Davis, Michael C. Heaven und J. Thomas Schriempf. SPIE, 2009. http://dx.doi.org/10.1117/12.815155.
Der volle Inhalt der QuelleKregel, Steven, Etienne Garand, Jia Zhou und Brett Marsh. „ALKALI METAL-GLUCOSE INTERACTION PROBED WITH INFRARED PRE-DISSOCIATION SPECTROSCOPY“. In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.td10.
Der volle Inhalt der QuelleShishido, J., T. Kato, W. Oohara, R. Hatakeyama und K. Tohji. „Electrical transport properties of alkali-metal/halogen encapsulated single-walled carbon nanotubes“. In 2007 7th IEEE Conference on Nanotechnology (IEEE-NANO). IEEE, 2007. http://dx.doi.org/10.1109/nano.2007.4601272.
Der volle Inhalt der QuelleBoroznin, S. V., Z. A. Zhitnikov, I. V. Zaporotskova und N. P. Boroznina. „Study of interaction of BCn-type borocarbon nanotubes with alkali metal atoms“. In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033073.
Der volle Inhalt der QuelleIzumida, T., G. H. Jeong, T. Hirata, R. Hatakeyama, Y. Neo und H. Mimura. „Electronic transport modification of single-walled carbon nanotubes by encapsulating alkali-metal ions“. In Microtechnologies for the New Millennium 2005, herausgegeben von Paolo Lugli, Laszlo B. Kish und Javier Mateos. SPIE, 2005. http://dx.doi.org/10.1117/12.608575.
Der volle Inhalt der QuelleTanuma, S., A. PaInichenko und N. Satoh. „Synthesis of low density carbon crystals by quenching gaseous carbon and intercalation of alkali metal atoms into these crystals“. In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835619.
Der volle Inhalt der QuelleShun-Fu Xu, Guang Yuan, Chun Li, Zhen-Ning Gao, Xiang-Fei Kong, Hong-Qun Zhang und Qiang Guo. „Roles of alkali-metal adsorption and defect position on work functions of capped single-wall carbon nanotubes“. In 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC). IEEE, 2010. http://dx.doi.org/10.1109/ivesc.2010.5644131.
Der volle Inhalt der QuelleKanzow, H., A. Ding, H. Sauer, T. Belz und R. Schlögl. „Chains of carbon nanoparticles from the interaction of fullerenes with thin metal films“. In ELECTRONIC PROPERTIES OF NOVEL MATERIALS--SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES. ASCE, 1999. http://dx.doi.org/10.1063/1.59783.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Alkali metal – carbon interaction"
McCarty, J. G. Interaction of carbon and sulfur on metal catalysts. Progress report. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/10118270.
Der volle Inhalt der QuelleMcCarty, J. G., und J. Vajo. Interaction of carbon and sulfur on metal catalysts: Technical progress report. Office of Scientific and Technical Information (OSTI), Februar 1989. http://dx.doi.org/10.2172/10118243.
Der volle Inhalt der Quelle