Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Algorithmic and combinatorics of monoids.

Zeitschriftenartikel zum Thema „Algorithmic and combinatorics of monoids“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Algorithmic and combinatorics of monoids" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Cain, Alan J., António Malheiro und Fábio M. Silva. „Combinatorics of patience sorting monoids“. Discrete Mathematics 342, Nr. 9 (September 2019): 2590–611. http://dx.doi.org/10.1016/j.disc.2019.05.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Abbes, S., S. Gouëzel, V. Jugé und J. Mairesse. „Asymptotic combinatorics of Artin–Tits monoids and of some other monoids“. Journal of Algebra 525 (Mai 2019): 497–561. http://dx.doi.org/10.1016/j.jalgebra.2019.01.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

DIEKERT, VOLKER, NICOLE ONDRUSCH und MARKUS LOHREY. „ALGORITHMIC PROBLEMS ON INVERSE MONOIDS OVER VIRTUALLY FREE GROUPS“. International Journal of Algebra and Computation 18, Nr. 01 (Februar 2008): 181–208. http://dx.doi.org/10.1142/s0218196708004366.

Der volle Inhalt der Quelle
Annotation:
Let G be a finitely generated virtually-free group. We consider the Birget–Rhodes expansion of G, which yields an inverse monoid and which is denoted by IM (G) in the following. We show that for a finite idempotent presentation P, the word problem of a quotient monoid IM (G)/P can be solved in linear time on a RAM. The uniform word problem, where G and the presentation P are also part of the input, is EXPTIME-complete. With IM (G)/P we associate a relational structure, which contains for every rational subset L of IM (G)/P a binary relation, consisting of all pairs (x,y) such that y can be obtained from x by right multiplication with an element from L. We prove that the first-order theory of this structure is decidable. This result implies that the emptiness problem for Boolean combinations of rational subsets of IM (G)/P is decidable, which, in turn implies the decidability of the submonoid membership problem of IM (G)/P. These results were known previously for free groups, only. Moreover, we provide a new algorithmic approach for these problems, which seems to be of independent interest even for free groups. We also show that one cannot expect decidability results in much larger frameworks than virtually-free groups because the subgroup membership problem of a subgroup H in an arbitrary group G can be reduced to a word problem of some IM (G)/P, where P depends only on H. A consequence is that there is a hyperbolic group G and a finite idempotent presentation P such that the word problem is undecidable for some finitely generated submonoid of IM (G)/P. In particular, the word problem of IM (G)/P is undecidable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hurwitz, Carol M. „On the homotopy theory of monoids“. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 47, Nr. 2 (Oktober 1989): 171–85. http://dx.doi.org/10.1017/s1446788700031621.

Der volle Inhalt der Quelle
Annotation:
AbsractIn this paper, it is shown that any connected, small category can be embedded in a semi-groupoid (a category in which there is at least one isomorphism between any two elements) in such a way that the embedding includes a homotopy equivalence of classifying spaces. This immediately gives a monoid whose classifying space is of the same homotopy type as that of the small category. This construction is essentially algorithmic, and furthermore, yields a finitely presented monoid whenever the small category is finitely presented. Some of these results are generalizations of ideas of McDuff.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

BLANCHET-SADRI, F. „ALGORITHMIC COMBINATORICS ON PARTIAL WORDS“. International Journal of Foundations of Computer Science 23, Nr. 06 (September 2012): 1189–206. http://dx.doi.org/10.1142/s0129054112400473.

Der volle Inhalt der Quelle
Annotation:
Algorithmic combinatorics on partial words, or sequences of symbols over a finite alphabet that may have some do-not-know symbols or holes, has been developing in the past few years. Applications can be found, for instance, in molecular biology for the sequencing and analysis of DNA, in bio-inspired computing where partial words have been considered for identifying good encodings for DNA computations, and in data compression. In this paper, we focus on two areas of algorithmic combinatorics on partial words, namely, pattern avoidance and subword complexity. We discuss recent contributions as well as a number of open problems. In relation to pattern avoidance, we classify all binary patterns with respect to partial word avoidability, we classify all unary patterns with respect to hole sparsity, and we discuss avoiding abelian powers in partial words. In relation to subword complexity, we generate and count minimal Sturmian partial words, we construct de Bruijn partial words, and we construct partial words with subword complexities not achievable by full words (those without holes).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

RENNER, LEX E. „DISTRIBUTION OF PRODUCTS IN FINITE MONOIDS I: COMBINATORICS“. International Journal of Algebra and Computation 09, Nr. 06 (Dezember 1999): 693–708. http://dx.doi.org/10.1142/s0218196799000394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Okniński, Jan, und Magdalena Wiertel. „Combinatorics and structure of Hecke–Kiselman algebras“. Communications in Contemporary Mathematics 22, Nr. 07 (15.06.2020): 2050022. http://dx.doi.org/10.1142/s0219199720500224.

Der volle Inhalt der Quelle
Annotation:
Hecke–Kiselman monoids [Formula: see text] and their algebras [Formula: see text], over a field [Formula: see text], associated to finite oriented graphs [Formula: see text] are studied. In the case [Formula: see text] is a cycle of length [Formula: see text], a hierarchy of certain unexpected structures of matrix type is discovered within the monoid [Formula: see text] and this hierarchy is used to describe the structure and the properties of the algebra [Formula: see text]. In particular, it is shown that [Formula: see text] is a right and left Noetherian algebra, while it has been known that it is a PI-algebra of Gelfand–Kirillov dimension one. This is used to characterize all Noetherian algebras [Formula: see text] in terms of the graphs [Formula: see text]. The strategy of our approach is based on the crucial role played by submonoids of the form [Formula: see text] in combinatorics and structure of arbitrary Hecke–Kiselman monoids [Formula: see text].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

ROSALES, J. C., P. A. GARCÍA-SÁNCHEZ und J. I. GARCÍA-GARCÍA. „PRESENTATIONS OF FINITELY GENERATED SUBMONOIDS OF FINITELY GENERATED COMMUTATIVE MONOIDS“. International Journal of Algebra and Computation 12, Nr. 05 (Oktober 2002): 659–70. http://dx.doi.org/10.1142/s021819670200105x.

Der volle Inhalt der Quelle
Annotation:
We give an algorithmic method for computing a presentation of any finitely generated submonoid of a finitely generated commutative monoid. We use this method also for calculating the intersection of two congruences on ℕp and for deciding whether or not a given finitely generated commutative monoid is t-torsion free and/or separative. The last section is devoted to the resolution of some simple equations on a finitely generated commutative monoid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Garg, Vijay K. „Algorithmic combinatorics based on slicing posets“. Theoretical Computer Science 359, Nr. 1-3 (August 2006): 200–213. http://dx.doi.org/10.1016/j.tcs.2006.03.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Polo, Harold. „Approximating length-based invariants in atomic Puiseux monoids“. Algebra and Discrete Mathematics 33, Nr. 1 (2022): 128–39. http://dx.doi.org/10.12958/adm1760.

Der volle Inhalt der Quelle
Annotation:
A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Li, Weimin. „Graphs with regular monoids“. Discrete Mathematics 265, Nr. 1-3 (April 2003): 105–18. http://dx.doi.org/10.1016/s0012-365x(02)00625-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Tsaranov, S. V. „Representation and Classification of Coxeter Monoids“. European Journal of Combinatorics 11, Nr. 2 (März 1990): 189–204. http://dx.doi.org/10.1016/s0195-6698(13)80073-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Šunić, Zoran. „Tamari lattices, forests and Thompson monoids“. European Journal of Combinatorics 28, Nr. 4 (Mai 2007): 1216–38. http://dx.doi.org/10.1016/j.ejc.2006.02.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Humphries, Stephen P., und Zane Kun Li. „Counting powers of words in monoids“. European Journal of Combinatorics 30, Nr. 5 (Juli 2009): 1297–308. http://dx.doi.org/10.1016/j.ejc.2008.10.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kabil, Mustapha, Maurice Pouzet und Ivo G. Rosenberg. „Free monoids and generalized metric spaces“. European Journal of Combinatorics 80 (August 2019): 339–60. http://dx.doi.org/10.1016/j.ejc.2018.02.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ayyer, Arvind, Anne Schilling, Benjamin Steinberg und Nicolas M. Thiéry. „Markov chains, ${\mathscr R}$-trivial monoids and representation theory“. International Journal of Algebra and Computation 25, Nr. 01n02 (Februar 2015): 169–231. http://dx.doi.org/10.1142/s0218196715400081.

Der volle Inhalt der Quelle
Annotation:
We develop a general theory of Markov chains realizable as random walks on [Formula: see text]-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Möbius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom–Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Magid, Andy. „Differential Brauer monoids“. Proceedings of the American Mathematical Society, Series B 10, Nr. 13 (12.04.2023): 153–65. http://dx.doi.org/10.1090/bproc/162.

Der volle Inhalt der Quelle
Annotation:
The differential Brauer monoid of a differential commutative ring R R is defined. Its elements are the isomorphism classes of differential Azumaya R R algebras with operation from tensor product subject to the relation that two such algebras are equivalent if matrix algebras over them, with entry-wise differentiation, are differentially isomorphic. The fine Bauer monoid, which is a group, is the same thing without the differential requirement. The differential Brauer monoid is then determined from the fine Brauer monoids of R R and R D R^D and the submonoid of the Brauer monoid whose underlying Azumaya algebras are matrix rings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Fan, Yushuang, und Salvatore Tringali. „Power monoids: A bridge between factorization theory and arithmetic combinatorics“. Journal of Algebra 512 (Oktober 2018): 252–94. http://dx.doi.org/10.1016/j.jalgebra.2018.07.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Zohre, Khaki, Saan Hossein Mohammadzadeh und Nouri Leila. „Characterization of monoids by condition (P_E)“. Quasigroups and Related Systems 30, Nr. 1(47) (Mai 2022): 91–100. http://dx.doi.org/10.56415/qrs.v30.07.

Der volle Inhalt der Quelle
Annotation:
In this paper first we recall condition (PE) and then will give general properties and a characterization of monoids for which all right acts satisfy this condition. Finally, we give a characterization of monoids, by comparing this property of their acts with some others.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kauers, Manuel, Peter Paule und Greg Reid. „Workshop on Symbolic Combinatorics and Algorithmic Differential Algebra“. ACM Communications in Computer Algebra 50, Nr. 1/2 (28.09.2016): 27–34. http://dx.doi.org/10.1145/3003653.3003658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kauers, Manuel, Peter Paule und Greg Reid. „Workshop on symbolic combinatorics and algorithmic differential algebra“. ACM Communications in Computer Algebra 50, Nr. 1 (27.04.2016): 27–34. http://dx.doi.org/10.1145/2930964.2930968.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lee, Seung-Joo. „Combinatorics inN=1Heterotic Vacua“. Advances in High Energy Physics 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/397895.

Der volle Inhalt der Quelle
Annotation:
We briefly review an algorithmic strategy to explore the landscape of heteroticE8×E8vacua, in the context of compactifying smooth Calabi-Yau threefolds with vector bundles. The Calabi-Yau threefolds are algebraically realised as hypersurfaces in toric varieties, and a large class of vector bundles are constructed thereon as monads. In the spirit of searching for standard-like heterotic vacua, emphasis is placed on the integer combinatorics of the model-building programme.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ateş, Fırat, Eylem G. Karpuz, Canan Kocapınar und A. Sinan Çevik. „Gröbner–Shirshov bases of some monoids“. Discrete Mathematics 311, Nr. 12 (Juni 2011): 1064–71. http://dx.doi.org/10.1016/j.disc.2011.03.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Baginová Jajcayová, Tatiana. „Schützenberger automata for HNN-extensions of inverse monoids and their use in algorithmic questions“. Information and Computation 269 (Dezember 2019): 104448. http://dx.doi.org/10.1016/j.ic.2019.104448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kambites, Mark. „Retracts of trees and free left adequate semigroups“. Proceedings of the Edinburgh Mathematical Society 54, Nr. 3 (17.08.2011): 731–47. http://dx.doi.org/10.1017/s0013091509001230.

Der volle Inhalt der Quelle
Annotation:
AbstractRecent research of the author has studied edge-labelled directed trees under a natural multiplication operation. The class of all such trees (with a fixed labelling alphabet) has an algebraic interpretation, as a free object in the class of adequate semigroups. We consider here a natural subclass of these trees, defined by placing a restriction on edge orientations, and show that the resulting algebraic structure is a free object in the class of left adequate semigroups. Through this correspondence we establish some structural and algorithmic properties of free left adequate semigroups and monoids, and consequently of the category of all left adequate semigroups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

MARKUS-EPSTEIN, L. „STALLINGS FOLDINGS AND SUBGROUPS OF AMALGAMS OF FINITE GROUPS“. International Journal of Algebra and Computation 17, Nr. 08 (Dezember 2007): 1493–535. http://dx.doi.org/10.1142/s0218196707003846.

Der volle Inhalt der Quelle
Annotation:
Stallings showed that every finitely generated subgroup of a free group is canonically represented by a finite minimal immersion of a bouquet of circles. In terms of the theory of automata, this is a minimal finite inverse automaton. This allows for the deep algorithmic theory of finite automata and finite inverse monoids to be used to answer questions about finitely generated subgroups of free groups. In this paper, we attempt to apply the same methods to other classes of groups. A fundamental new problem is that the Stallings folding algorithm must be modified to allow for "sewing" on relations of non-free groups. We look at the class of groups that are amalgams of finite groups. It is known that these groups are locally quasiconvex and thus, all finitely generated subgroups are represented by finite automata. We present an algorithm to compute such a finite automaton and use it to solve various algorithmic problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

AKER, KÜRŞAT, MAHIR BILEN CAN und MÜGE TAŞKIN. „R-POLYNOMIALS OF FINITE MONOIDS OF LIE TYPE“. International Journal of Algebra and Computation 20, Nr. 06 (September 2010): 793–805. http://dx.doi.org/10.1142/s0218196710005893.

Der volle Inhalt der Quelle
Annotation:
This paper studies the combinatorics of the orbit Hecke algebras associated with W × W orbits in the Renner monoid of a finite monoid of Lie type, M, where W is the Weyl group associated with M. It is shown by Putcha in [12] that the Kazhdan–Lusztig involution [6] can be extended to the orbit Hecke algebra which enables one to define the R-polynomials of the intervals contained in a given orbit. Using the R-polynomials, we calculate the Möbius function of the Bruhat–Chevalley ordering on the orbits. Furthermore, we provide a necessary condition for an interval contained in a given orbit to be isomorphic to an interval in some Weyl group.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Chang, Ching-Lueh. „Hardness of learning loops, monoids, and semirings“. Discrete Applied Mathematics 162 (Januar 2014): 149–58. http://dx.doi.org/10.1016/j.dam.2013.08.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Nathanson, Melvyn B. „Free monoids and forests of rational numbers“. Discrete Applied Mathematics 216 (Januar 2017): 662–69. http://dx.doi.org/10.1016/j.dam.2015.07.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Putcha, Mohan S. „Bruhat-Chevalley Order in Reductive Monoids“. Journal of Algebraic Combinatorics 20, Nr. 1 (Juli 2004): 33–53. http://dx.doi.org/10.1023/b:jaco.0000047291.42015.a6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Flores, Ramón, und Juan González-Meneses. „On lexicographic representatives in braid monoids“. Journal of Algebraic Combinatorics 52, Nr. 4 (30.10.2019): 561–97. http://dx.doi.org/10.1007/s10801-019-00913-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Krob, Daniel, Jean Mairesse und Ioannis Michos. „Computing the average parallelism in trace monoids“. Discrete Mathematics 273, Nr. 1-3 (Dezember 2003): 131–62. http://dx.doi.org/10.1016/s0012-365x(03)00233-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Giscard, P. L., und P. Rochet. „Algebraic Combinatorics on Trace Monoids: Extending Number Theory to Walks on Graphs“. SIAM Journal on Discrete Mathematics 31, Nr. 2 (Januar 2017): 1428–53. http://dx.doi.org/10.1137/15m1054535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Cain, Alan J., und António Malheiro. „Combinatorics of cyclic shifts in plactic, hypoplactic, sylvester, Baxter, and related monoids“. Journal of Algebra 535 (Oktober 2019): 159–224. http://dx.doi.org/10.1016/j.jalgebra.2019.06.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Cieliebak, Mark, Thomas Erlebach, Zsuzsanna Lipták, Jens Stoye und Emo Welzl. „Algorithmic complexity of protein identification: combinatorics of weighted strings“. Discrete Applied Mathematics 137, Nr. 1 (Februar 2004): 27–46. http://dx.doi.org/10.1016/s0166-218x(03)00187-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Cardinal, Jean, Erik D. Demaine, Martin L. Demaine, Shinji Imahori, Tsuyoshi Ito, Masashi Kiyomi, Stefan Langerman, Ryuhei Uehara und Takeaki Uno. „Algorithmic Folding Complexity“. Graphs and Combinatorics 27, Nr. 3 (17.03.2011): 341–51. http://dx.doi.org/10.1007/s00373-011-1019-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Goode, Elizabeth, und Dennis Pixton. „Recognizing splicing languages: Syntactic monoids and simultaneous pumping“. Discrete Applied Mathematics 155, Nr. 8 (April 2007): 989–1006. http://dx.doi.org/10.1016/j.dam.2006.10.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Coleman, Thomas D. H., David M. Evans und Robert D. Gray. „Permutation monoids and MB-homogeneity for graphs and relational structures“. European Journal of Combinatorics 78 (Mai 2019): 163–89. http://dx.doi.org/10.1016/j.ejc.2019.02.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ebanks, Bruce. „Some generalized quadratic functional equations on monoids“. Aequationes mathematicae 94, Nr. 4 (05.11.2019): 737–47. http://dx.doi.org/10.1007/s00010-019-00690-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Rybalov, Alexander Nikolaevich. „On generic complexity of the subset sum problem in monoids and groups of integer matrix of order two“. Herald of Omsk University 25, Nr. 4 (28.12.2020): 10–15. http://dx.doi.org/10.24147/1812-3996.2020.25(4).10-15.

Der volle Inhalt der Quelle
Annotation:
Generic-case approach to algorithmic problems was suggested by A. Miasnikov, I. Kapovich, P. Schupp and V. Shpilrain in 2003. This approach studies behavior of an algo-rithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we prove that the subset sum problems for the monoid of integer positive unimodular matrices of the second order, the special linear group of the second order, and the modular group are generically solvable in polynomial time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

White, Jacob A. „Coloring complexes and combinatorial Hopf monoids“. Journal of Combinatorial Theory, Series A 194 (Februar 2023): 105698. http://dx.doi.org/10.1016/j.jcta.2022.105698.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Dvurečenskij, Anatolij, und Jiří Rachůnek. „Probabilistic averaging in bounded commutative residuated ℓ-monoids“. Discrete Mathematics 306, Nr. 13 (Juli 2006): 1317–26. http://dx.doi.org/10.1016/j.disc.2005.12.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ahmed, Chwas, Paul Martin und Volodymyr Mazorchuk. „On the number of principal ideals in d-tonal partition monoids“. Annals of Combinatorics 25, Nr. 1 (08.01.2021): 79–113. http://dx.doi.org/10.1007/s00026-020-00518-z.

Der volle Inhalt der Quelle
Annotation:
AbstractFor a positive integer d, a non-negative integer n and a non-negative integer $$h\le n$$ h ≤ n , we study the number $$C_{n}^{(d)}$$ C n ( d ) of principal ideals; and the number $$C_{n,h}^{(d)}$$ C n , h ( d ) of principal ideals generated by an element of rank h, in the d-tonal partition monoid on n elements. We compute closed forms for the first family, as partial cumulative sums of known sequences. The second gives an infinite family of new integral sequences. We discuss their connections to certain integral lattices as well as to combinatorics of partitions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wiertel, Magdalena. „Irreducible representations of Hecke–Kiselman monoids“. Linear Algebra and its Applications 640 (Mai 2022): 12–33. http://dx.doi.org/10.1016/j.laa.2022.01.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Chapman, Scott T., Rolf Hoyer und Nathan Kaplan. „Delta sets of numerical monoids are eventually periodic“. Aequationes mathematicae 77, Nr. 3 (Juni 2009): 273–79. http://dx.doi.org/10.1007/s00010-008-2948-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Sabour, Kh, B. Fadli und S. Kabbaj. „Wilson’s functional equation on monoids with involutive automorphisms“. Aequationes mathematicae 90, Nr. 5 (26.08.2016): 1001–11. http://dx.doi.org/10.1007/s00010-016-0435-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Bessy, S., und D. Rautenbach. „Algorithmic aspects of broadcast independence“. Discrete Applied Mathematics 314 (Juni 2022): 142–49. http://dx.doi.org/10.1016/j.dam.2022.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Bodlaender, Hans L. „The algorithmic theory of treewidth“. Electronic Notes in Discrete Mathematics 5 (Juli 2000): 27–30. http://dx.doi.org/10.1016/s1571-0653(05)80116-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Dourado, Mitre C., Fábio Protti und Jayme L. Szwarcfiter. „Algorithmic Aspects of Monophonic Convexity“. Electronic Notes in Discrete Mathematics 30 (Februar 2008): 177–82. http://dx.doi.org/10.1016/j.endm.2008.01.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

DIEKERT, VOLKER, und ALEXEI MYASNIKOV. „GROUP EXTENSIONS OVER INFINITE WORDS“. International Journal of Foundations of Computer Science 23, Nr. 05 (August 2012): 1001–19. http://dx.doi.org/10.1142/s0129054112400424.

Der volle Inhalt der Quelle
Annotation:
Non-Archimedean words have been introduced as a new type of infinite words which can be investigated through classical methods in combinatorics on words due to a length function. The length function, however, takes values in the additive group of polynomials ℤ[t] (and not, as traditionally, in ℕ), which yields various new properties. Non-Archimedean words allow to solve a number of interesting algorithmic problems in geometric and algorithmic group theory. There is also a connection to logic and the first-order theory in free groups (Tarski Problems). In the present paper we provide a general method to use infinite words over a discretely ordered abelian group as a tool to investigate certain group extensions for an arbitrary group G. The central object is a group E (A, G) which is defined in terms of a non-terminating, but confluent rewriting system. The groupG as well as some natural HNN-extensions of G embed into E (A, G) (and still "behave like" G), which makes it interesting to study its algorithmic properties. In order to show that every group G embeds into E (A, G) we combine methods from combinatorics on words, string rewriting and group theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie