Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Algorithme split“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Algorithme split" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Algorithme split"
Ortiz Díaz, Agustín Alejandro, Isvani Inocencio Frías Blanco, Laura María Palomino Mariño und Fabiano Baldo. „An Online Tree-Based Approach for Mining Non-Stationary High-Speed Data Streams“. Revista de Informática Teórica e Aplicada 27, Nr. 1 (15.01.2020): 36–47. http://dx.doi.org/10.22456/2175-2745.90822.
Der volle Inhalt der QuelleGarcía-Martín, Eva, Niklas Lavesson, Håkan Grahn, Emiliano Casalicchio und Veselka Boeva. „Energy-aware very fast decision tree“. International Journal of Data Science and Analytics 11, Nr. 2 (März 2021): 105–26. http://dx.doi.org/10.1007/s41060-021-00246-4.
Der volle Inhalt der QuelleLiang, Liang. „A Fusion Multiobjective Empire Split Algorithm“. Journal of Control Science and Engineering 2020 (14.12.2020): 1–14. http://dx.doi.org/10.1155/2020/8882086.
Der volle Inhalt der QuelleJin, C., L. J. Lu und J. N. Min. „A two-stage construction heuristic approach for vehicle routing problem with split deliveries and pickups: Case studies and performance comparison“. Advances in Production Engineering & Management 17, Nr. 1 (15.03.2022): 121–33. http://dx.doi.org/10.14743/apem2022.1.425.
Der volle Inhalt der QuellePinker, Rachel T., Donglian Sun, Meng-Pai Hung, Chuan Li und Jeffrey B. Basara. „Evaluation of Satellite Estimates of Land Surface Temperature from GOES over the United States“. Journal of Applied Meteorology and Climatology 48, Nr. 1 (01.01.2009): 167–80. http://dx.doi.org/10.1175/2008jamc1781.1.
Der volle Inhalt der QuelleHidayat, Trifenaus Prabu, und Andre Sugioko. „Performance Analyzes of Bee Colony Split-Plot Algorithm“. International Journal of Information and Education Technology 5, Nr. 7 (2015): 549–52. http://dx.doi.org/10.7763/ijiet.2015.v5.566.
Der volle Inhalt der QuelleYang, Bin-Bin, Song-Qing Shen und Wei Gao. „Weighted Oblique Decision Trees“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 5621–27. http://dx.doi.org/10.1609/aaai.v33i01.33015621.
Der volle Inhalt der QuelleBollwein, Ferdinand, und Stephan Westphal. „A branch & bound algorithm to determine optimal bivariate splits for oblique decision tree induction“. Applied Intelligence 51, Nr. 10 (12.03.2021): 7552–72. http://dx.doi.org/10.1007/s10489-021-02281-x.
Der volle Inhalt der QuelleHuang, Zheng, Yanting Zhang, Lin Wang, Jingyu Xu und Yunlong Zheng. „Research on multi-objective parameter optimization of split flow dual flash thermodynamic cycle“. Journal of Physics: Conference Series 2728, Nr. 1 (01.03.2024): 012008. http://dx.doi.org/10.1088/1742-6596/2728/1/012008.
Der volle Inhalt der QuelleXiao, Su. „Deblurring by Solving a TVp-Regularized Optimization Problem Using Split Bregman Method“. Advances in Multimedia 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/906464.
Der volle Inhalt der QuelleDissertationen zum Thema "Algorithme split"
Rao, Michaël. „Décompositions de graphes et algorithmes efficaces“. Metz, 2006. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2006/Rao.Michael.SMZ0607.pdf.
Der volle Inhalt der QuelleThis thesis deals with the modular decomposition and several of its generalizations. In a first time we show how graph decompositions can be used to solve efficiently some problems on graphs. We show how the modular decomposition can be used to obtain linear algorithms for " independent set ", " clique ", " chromatic number " and " partition into cliques " on (P_5,gem)-free graphs. We also show how the split decomposition can be used to compute the chromatic number, and we give a new class of vertex partitioning problems which can be solved in polynomial time on graphs of bounded clique width. In a second time, we are interested to generalize the modular decomposition. We study a new decomposition called the bi-join decomposition. We give in particular several characterizations of completely decomposable graphs, and a linear time decomposition algorithm. We introduce some parametrized generalization of the modular decomposition, and we show that theses generalizations are relatively close to the clique width
Perdigão, Martino Diego. „Stratégies d'optimisation pour le problème intégré de transport et de gestion de stock“. Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0139.
Der volle Inhalt der QuelleInventory management and vehicle routing problems are logistic challenges that can significantly influence the efficiency and effectiveness of supply chain operations and should be well-coordinated and aligned. Handling both jointly is even more challenging when considering the number of customers to be served and the length of the time horizon. In the literature, this problem is known as the Inventory Routing Problem (IRP) and aims to find a minimum-cost solution that addresses both inventory and transportation problems simultaneously. The IRP was first introduced in 1983 by Bell et al. and have received a lot of attention from the OR community so far, which has introduced numerous extensions and provided datasets to favor research and fair comparisons.In research, some gaps exist, and the IRP is not an exception. Most works in the literature so far assume that the fleet of vehicles used for the deliveries is homogeneous and that the costs associated with product storage and customer needs are constant and equal over the entire time horizon, which is not in accordance with a real scenario. Also, a single-item delivery per period is often considered by the formulation, which is clearly not cost-effective.This thesis addresses the IRP and introduces a new variant that is closer to a real logistic scenario by incorporating a heterogeneous vehicle fleet, customer demands, and inventory holding costs that are period-dependent. Additionally, it considers that customers may prefer receiving products in batches rather than in single units. For that, a new set of instances is introduced to handle these new features. This novel variant, named the Heterogeneous Inventory Routing Problem with Batch Size (HIRP-BS), is studied using three approaches. The first one is a mathematical formulation that extends a flow formulation initially designed to handle the HIRP-BS characteristics. New variables and constraints are then required to consider the new incorporated features. Not surprisingly, the formulation is not capable of handling large-scale instances and even the medium-scale ones are hard to solve in a timely manner. The second method is an iterative algorithm which decomposes the original IRP into as many sub-problems as periods of time are considered. The idea is to solve the sub-problems in chronological order such that at each iteration (except for the first, which corresponds to the first period), it uses the solution obtained in the previous as a starting point for the current one. The changes are limited by an input parameter to accelerate convergence. The overall idea is that for a given period, the following iterations should require smart modification of the previous solutions of the partial problem already solved and that the number of changes should decrease once it approaches the end of the time horizon.The third method is a split-based metaheuristic that decomposes a multi-period sequence of customers, called a giant tour, into routes that are assigned to a period and a vehicle type. The contribution leads to a new multi-period Split algorithm. It starts with the computation of the estimated quantities and periods for the replenishment, assuming the delivery operations at the latest possible moment. It allows the definition of a giant tour that is evaluated through a Split algorithm responsible for defining feasible solutions for the problem. Then, a local search mechanism dedicated to the routing problem takes advantage of classical route-based operators. Lastly, a post-optimization phase is considered, and slightly improve solution quality in terms of inventory and routing aspects based on a solution distance notion. Results are promising in terms of convergence and can provide valid upper bounds in a reasonable time even for the large-scale instances proposed
Franciosi, Felipe Mainieri. „Uma abordagem paralela para o algoritmo Split“. Pontifícia Universidade Católica do Rio Grande do Sul, 2008. http://hdl.handle.net/10923/1543.
Der volle Inhalt der QuelleThe behavioral analysis of a process allows the detection of deficiencies, as well as assessing performance impact caused by environmental changes. The use of analytical models to describe the observed process provides these data through the resolution of equation systems. In the case where modeling is made using formalisms such as Stochastic Automata Network, the resolution of these systems depends on the multiplication of vectors by structures defined using tensor algebra. In view of these multiplications having a high computational cost, various algorithms have been proposed to solve it. Recently, the Split iterative solution was proposed, and the goal of this work is to provide a parallel optimized alternative for it, looking for an improved performance of the solution.
A análise comportamental de um processo permite a detecção de deficiências, assim como avaliar o impacto no desempenho do mesmo causado por mudanças no ambiente. O uso de modelos analíticos para descrever o processo em observação fornece estes dados através da resolução de sistemas de equações. No caso de modelagens feitas com a utilização de formalismos como Rede de Autômatos Estocásticos, a resolução destes sistemas depende da multiplicação de vetores por estruturas definidas através da álgebra tensorial. Por ter um alto custo computacional, diversos algoritmos foram propostos para resolver esta multiplicação. Recentemente a solução iterativa Split foi proposta, e o objetivo deste trabalho é apresentar alternativas paralelas e otimizações para a mesma, buscando um melhor desempenho da solução.
Douchin, Nicolas. „Étude de l'influence du conduit d'évaporation atmosphérique sur des liaisons satellite-navire entre 1 et 10 GHz : contribution à l'élaboration d'une méthode de caractérisation de ce conduit“. Toulouse, ENSAE, 1992. http://www.theses.fr/1992ESAE0017.
Der volle Inhalt der QuelleBrochier, Felipe Osmar Berwanger. „Otimização de um condicionador de ar do tipo split com vazão variável de refrigerante“. Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4619.
Der volle Inhalt der QuelleMade available in DSpace on 2015-07-23T01:11:46Z (GMT). No. of bitstreams: 1 FelipeBrochier.pdf: 2248315 bytes, checksum: 51a12fbb2e530bf08f1847557932b381 (MD5) Previous issue date: 2014-02
Nenhuma
Este trabalho tem como objetivo otimizar o custo operacional dependente dos parâmetros de vazão de ar do condensador, número de aletas e de circuitos do condensador, frequência do compressor e parâmetros do dispositivo de expansão de um sistema de um condicionador de ar do tipo split hiwall unitário com vazão variável de refrigerante (VRV). Para a otimização foram consideradas as freqüências de ocorrência de quatro condições de temperatura do ambiente externo na cidade de Porto Alegre. O condicionador de ar abordado neste trabalho troca calor utilizando um ciclo de compressão de vapor de simples estágio, tendo como fluido de trabalho o refrigerante R-410A. O sistema completo, composto de um compressor, um condensador, um evaporador e tubo capilar, foi modelado analiticamente utilizando o software EES (Engineering Equation Solver) e ajustado de acordo com testes realizados em calorímetro. Para a otimização, um algoritmo genético foi programado no próprio EES. Após a otimização do custo operacional em função dos parâmetros físicos de projeto, o COP aumentou em até 12 % na condição de ar externo a 35 °C. A otimização em função dos parâmetros de controle mostrou aumento ainda mais significativo do COP do sistema. Também é feita uma comparação entre os valores de COP de um sistema de vazão constante de ar e refrigerante e um sistema com vazão variável de ar e refrigerante.
This work aims to optimize the operational cost of an air conditioning system with variable refrigerant flow (VRF). The cost is dependent of the following parameters: condenser air flow, number of condenser fins and circuits, compressor frequency and the expansion device. The optimization considered the frequencies of occurrence of four distinct ambient temperatures in the city of Porto Alegre. The air conditioner presented in this work exchange heat using a single stage vapor compression cycle, with the refrigerant R-410A as the working fluid. The complete system comprises a compressor, a condenser, an evaporator and a capillary tube and was analytically modeled using the EES (Engineering Equation Solver) software. The parameters were fitted according to results obtained in a calorimeter and for optimization, a genetic algorithm was programmed using the same software. After the optimization of the operational cost as a function of the project parameters, the COP was raised up to 12% in external ambient air at 35 °C. The optimization of the operational cost as a function of the control parameters showed even a more significant system COP raise. A comparison between the COP of a constant air and refrigerant flow system and a variable air and refrigerant flow system was also performed.
Chen, Zhuo. „A split-and-merge approach for quadrilateral-based image segmentation“. Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38749440.
Der volle Inhalt der QuelleShi, Haijian. „Best-first Decision Tree Learning“. The University of Waikato, 2007. http://hdl.handle.net/10289/2317.
Der volle Inhalt der QuelleCinnella, Pasquale. „Flux-split algorithms for flows with non-equilibrium chemistry and thermodynamics“. Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54506.
Der volle Inhalt der QuellePh. D.
Liu, Rongrong. „A Novel Attack Method Against Split Manufactured Circuits“. University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573812230926837.
Der volle Inhalt der QuelleChen, Zhuo, und 陳卓. „A split-and-merge approach for quadrilateral-based image segmentation“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38749440.
Der volle Inhalt der QuelleBücher zum Thema "Algorithme split"
Anderson, W. Kyle. Three-dimensional multigrid algorithms for the flux-split Euler equations. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.
Den vollen Inhalt der Quelle finden1952-, Thomas James L., Whitfield David L und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. Three-dimensional multigrid algorithms for the flux-split Euler equations. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.
Den vollen Inhalt der Quelle findenAnderson, W. Kyle. Three-dimensional multigrid algorithms for the flux-split Euler equations. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.
Den vollen Inhalt der Quelle findenAnderson, W. Kyle. Three-dimensional multigrid algorithms for the flux-split Euler equations. Hampton, Va: Langley Research Center, 1988.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Implicit multigrid algorithms for the three-dimensional flux split Euler equations. [Washington, DC: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenInstitute for Computer Applications in Science and Engineering. und United States. National Aeronautics and Space Administration., Hrsg. Parallel directionally split solver based on reformulation of pipelined Thomas algorithm. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenB, Grossman, und United States. National Aeronautics and Space Administration., Hrsg. Calculation of hypersonic shock structure using flux-splut algorithms. Blacksburg, VA: Interdiciplinmary Center for Applied Mathematics, Virginia Polytechnic Institute and State University, 1991.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. und Mississippi State University. Dept. of Aerophysics and Aerospace Engineering., Hrsg. Adaptive grid embedding for the two-dimensional flux-split Euler equations. Mississippi State, Miss: Mississippi State University, Dept. of Aerospace Engineering, 1990.
Den vollen Inhalt der Quelle findenImplicit multigrid algorithms for the three-dimensional flux split Euler equations. [Washington, DC: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenDas, Vinu V., und Passent M. El-Kafrawy. Signal Processing and Information Technology: Second International Joint Conference, SPIT 2012, Dubai, UAE, September 20-21, 2012, Revised Selected Papers. Springer, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Algorithme split"
Chalupa, Marek, und Cedric Richter. „Bubaak-SpLit: Split what you cannot verify (Competition contribution)“. In Tools and Algorithms for the Construction and Analysis of Systems, 353–58. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57256-2_20.
Der volle Inhalt der QuelleFomin, Fedor V., und Dieter Kratsch. „Split and List“. In Exact Exponential Algorithms, 153–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16533-7_9.
Der volle Inhalt der QuelleTakahashi, Daisuke. „Split-Radix FFT Algorithms“. In High-Performance Computing Series, 21–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9965-7_4.
Der volle Inhalt der QuellePaul, Christophe. „Split Decomposition via Graph-Labelled Trees“. In Encyclopedia of Algorithms, 2051–56. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_686.
Der volle Inhalt der QuellePaul, Christophe. „Split Decomposition via Graph-Labelled Trees“. In Encyclopedia of Algorithms, 1–7. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27848-8_686-1.
Der volle Inhalt der QuelleZhang, Han, Qing Li und Xin Yao. „Knowledge-Guided Optimization for Complex Vehicle Routing with 3D Loading Constraints“. In Lecture Notes in Computer Science, 133–48. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70055-2_9.
Der volle Inhalt der QuelleGioan, Emeric, und Christophe Paul. „Dynamic Distance Hereditary Graphs Using Split Decomposition“. In Algorithms and Computation, 41–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-77120-3_6.
Der volle Inhalt der QuelleRenjith, P., und N. Sadagopan. „Hamiltonicity in Split Graphs - A Dichotomy“. In Algorithms and Discrete Applied Mathematics, 320–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53007-9_28.
Der volle Inhalt der QuelleDivya, D., und S. Vijayakumar. „On Star Partition of Split Graphs“. In Algorithms and Discrete Applied Mathematics, 209–23. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52213-0_15.
Der volle Inhalt der QuelleOunali, Chedi, Fahmi Ben Rejab und Kaouther Nouira Ferchichi. „Incremental Algorithm Based on Split Technique“. In Advances in Intelligent Systems and Computing, 567–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16660-1_55.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Algorithme split"
Wang, Yan. „Design and Application of Web-based Education Management System using Split and Kernel based Residual Network“. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/iacis61494.2024.10721891.
Der volle Inhalt der QuelleGhosh, Anjan, und Paparao Palacharla. „Efficient optical preprocessing using split-step algorithms“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tudd2.
Der volle Inhalt der QuelleSun, Jian, Hongyu Jia, Bo Hu, Xiao Huang, Hao Zhang, Hai Wan und Xibin Zhao. „Speeding up Very Fast Decision Tree with Low Computational Cost“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/177.
Der volle Inhalt der QuelleZhang, Zheyu, Tianping Zhang und Jian Li. „Unbiased Gradient Boosting Decision Tree with Unbiased Feature Importance“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/515.
Der volle Inhalt der QuelleBayat, Saeid, Nastaran Shahmansouri, Satya RT Peddada, Alex Tessier, Adrian Butscher und James T. Allison. „Multi-Split Configuration Design for Fluid-Based Thermal Management Systems“. In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-143578.
Der volle Inhalt der QuelleLing, Hangkun. „Emulating Expert Systems and the Location-Identity Split“. In 2018 International Conference on Computer Modeling, Simulation and Algorithm (CMSA 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/cmsa-18.2018.19.
Der volle Inhalt der QuelleHenriksen, Patrick, und Alessio Lomuscio. „DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification via Indirect Effect Analysis“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/351.
Der volle Inhalt der QuelleZecevic, Zarko, und Bozo Krstajic. „Low-complexity dynamic synchrophasor estimation algorithm“. In 2018 23rd International Scientific-Professional Conference on Information Technology (IT). IEEE, 2018. http://dx.doi.org/10.1109/spit.2018.8350862.
Der volle Inhalt der QuelleHoyle, Christopher, Wei Chen, Bruce Ankenman und Nanxin Wang. „Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49561.
Der volle Inhalt der QuelleWu, C. H., und A. E. Yagle. „The gradient adaptive split lattice algorithm“. In [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1992. http://dx.doi.org/10.1109/icassp.1992.226447.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Algorithme split"
Ostashev, Vladimir, Michael Muhlestein und D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Der volle Inhalt der QuelleWarren, Russell, Stanley Osher und Richard Vanderbeek. Multiple Aerosol Unmixing by the Split Bregman Algorithm. Fort Belvoir, VA: Defense Technical Information Center, Mai 2011. http://dx.doi.org/10.21236/ada555738.
Der volle Inhalt der QuelleSzymczak, William G. Viscous Split Algorithms for the Time Dependent Incompressible Navier Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, Juni 1989. http://dx.doi.org/10.21236/ada211592.
Der volle Inhalt der QuelleBarrios, Amalia E., und Kenneth H. Craig. Rough Surface Models Implemented Within the Split-Step Parabolic Equation Algorithm. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada280843.
Der volle Inhalt der QuelleZhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan und Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2005. http://dx.doi.org/10.55274/r0012049.
Der volle Inhalt der Quelle