Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Algebraic.

Zeitschriftenartikel zum Thema „Algebraic“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Algebraic" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Arutyunov, A. A. „ON DERIVATIONS ASSOCIATED WITH DIFFERENT ALGEBRAIC STRUCTURES IN GROUP ALGEBRAS“. Eurasian Mathematical Journal 9, Nr. 3 (2018): 8–13. http://dx.doi.org/10.32523/2077-9879-2018-9-3-8-13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nongmanee, Anak, und Sorasak Leeratanavalee. „Algebraic connections between Menger algebras and Menger hyperalgebras via regularity“. Algebra and Discrete Mathematics 36, Nr. 1 (2023): 61–73. http://dx.doi.org/10.12958/adm2135.

Der volle Inhalt der Quelle
Annotation:
Menger hyperalgebras of rank n, where n is a fixed integer, can be regarded as a natural generalization of arbitrary semihypergroups. Based on this knowledge, an interesting question arises: what a generalization of regular semihypergroups is. In the article, we establish the notion of v-regular Menger hyperalgebras of rank n, which can be considered as an extension of regular semihypergroups. Furthermore, we study regularity of Menger hyperalgebras of rank n which are induced by some subsets of Menger algebras of rank n. In particular, we obtain sufficient conditions so that the Menger hyperalgebras of rank n are v-regular.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ligęza, J., und M. Tvrdý. „On systems of linear algebraic equations in the Colombeau algebra“. Mathematica Bohemica 124, Nr. 1 (1999): 1–14. http://dx.doi.org/10.21136/mb.1999.125977.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Clerbout, M., und Y. Roos. „Semicommutations and algebraic algebraic“. Theoretical Computer Science 103, Nr. 1 (August 1992): 39–49. http://dx.doi.org/10.1016/0304-3975(92)90086-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nesterenko, Yu V. „ON ALGEBRAIC INDEPENDENCE OF ALGEBRAIC POWERS OF ALGEBRAIC NUMBERS“. Mathematics of the USSR-Sbornik 51, Nr. 2 (28.02.1985): 429–54. http://dx.doi.org/10.1070/sm1985v051n02abeh002868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Armitage, J. V. „ALGEBRAIC NUMBERS AND ALGEBRAIC FUNCTIONS“. Bulletin of the London Mathematical Society 27, Nr. 3 (Mai 1995): 296–98. http://dx.doi.org/10.1112/blms/27.3.296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hone, A. N. W., Orlando Ragnisco und Federico Zullo. „Algebraic entropy for algebraic maps“. Journal of Physics A: Mathematical and Theoretical 49, Nr. 2 (10.12.2015): 02LT01. http://dx.doi.org/10.1088/1751-8113/49/2/02lt01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

VIALLET, C. M. „ALGEBRAIC DYNAMICS AND ALGEBRAIC ENTROPY“. International Journal of Geometric Methods in Modern Physics 05, Nr. 08 (Dezember 2008): 1373–91. http://dx.doi.org/10.1142/s0219887808003375.

Der volle Inhalt der Quelle
Annotation:
We give the definition of algebraic entropy, which is a global index of complexity for dynamical systems with a rational evolution. We explain its geometrical meaning, and different methods, heuristic or exact to calculate this entropy. This quantity is a very good integrability detector. It also has remarkable properties, which make it an interesting object of study by itself. It is in particular conjectured to be the logarithm of algebraic integer, with a limited range of values, still to be explored.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Giusti, Neura Maria De Rossi, und Claudia Lisete Oliveira Groenwald. „Matemática na Comunidade: um contexto educativo para a aprendizagem social e desenvolvimento do pensamento algébricoMathematics in the Community: an educational context to the social learning and development of algebraic thinking“. Educação Matemática Pesquisa : Revista do Programa de Estudos Pós-Graduados em Educação Matemática 23, Nr. 1 (11.04.2021): 561–90. http://dx.doi.org/10.23925/1983-3156.2021v23i1p561-590.

Der volle Inhalt der Quelle
Annotation:
ResumoO artigo apresenta um recorte de uma pesquisa desenvolvida no município de Vacaria, no estado do Rio Grande do Sul, onde investigou-se a integração e divulgação de conhecimentos matemáticos na comunidade, a partir de um contexto educativo para a socialização de conceitos da educação básica, tendo em vista a aprendizagem social e, especificamente neste trabalho, o desenvolvimento do pensamento algébrico. Para a pesquisa qualitativa de investigação-ação foram utilizadas entrevistas dirigidas a comunidade participante e registros fotográficos com as resoluções das tarefas. As análises se apoiam sobre a Base Nacional Comum Curricular e as demandas cognitivas. As diferentes formas de aprender a aprender matemática, a mobilização, o interesse, os compartilhamentos dos conhecimentos matemáticos foram considerados, assim como as diferentes formas de resoluções e de raciocínio matemático empregado perante as tarefas apresentadas. As evidências apontam que os conhecimentos relacionados ao desenvolvimento do pensamento algébrico ofereceram empecilhos na interpretação e na compreensão da simbologia algébrica, visto que operar com letras e outros símbolos requer conhecimentos da linguagem algébrica para que se possa estabelecer generalizações, análises e resoluções. Também destacamos a importância da escola sobre o desenvolvimento de competências básicas.Palavras-chave: Educação matemática, Aprendizagem social, Aprender a aprender, Pensamento algébrico.AbstractThe article presents a snippet of a research developed in Vacaria in the state of Rio Grande do Sul, where the integration and disclosure of mathematical knowledge in the community was investigated, from an educational context to the socialisation of basic education concepts, in view of the social learning and, specifically in this study, the development of algebraic thinking. With a qualitative approach of investigation-action we verified direct interviews to the participating community and photographic records with the resolutions of the tasks. The analyses are based on the Common National Curriculum Base and the cognitive demands. The different forms of learn to learn mathematics, the mobilisation, the interest, the mathematical knowledge sharing were considered, as the different forms of resolutions and mathematical reasoning employed in front of presented tasks. The evidences indicate that knowledge related to development of algebraic thinking offered obstacles in the interpretation and understanding of algebraic simbology, since operating with letters and others symbols requires knowledge of algebraic language to establish generalisations, analyses, and resolutions. We also emphasise the importance of school for basic skills development.Keywords: Mathematical education, Social learning, Learn to learn, Algebraic thinking.ResumenEl artículo presenta un extracto de una investigación desarrollada en la ciudad de Vacaria, en el estado de Rio Grande do Sul, donde se investigó la integración y divulgación del conocimiento matemático en la comunidad, desde un contexto educativo para la socialización de conceptos de la enseãnza básica, con miras al aprendizaje social y, específicamente en este trabajo, el desarrollo del pensamiento algebraico. Con un enfoque cualitativo de la investigación-acción, se verificaron entrevistas orientadas a la comunidad participante y registros fotográficos con las resoluciones de las tareas. Los análisis se basan en la Base Curricular Nacional Común y las demandas cognitivas. Se consideraron las diferentes maneras de aprender a aprender matemáticas, la movilización, el interés, el intercambio de conocimientos matemáticos, así como las diferentes maneras de resoluciones y razonamientos matemáticos empleados en las tareas presentadas. Las evidencias apuntan que los conocimientos relacionados con el desarrollo del pensamiento algebraico ofrecieron obstáculos en la interpretación y comprensión de la simbología algebraica, ya que operar con letras y otros símbolos requiere conocimientos del lenguaje algebraico para poder establecer generalizaciones, análisis y resoluciones. También destacamos la importancia de la escuela en el desarrollo de habilidades básicas.Palabras clave: Educación matemática, Aprendizaje social, Aprender a aprender, Pensamiento algebraico.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sreeja S Nair, Kumari. „Exploring Normal Covering Spaces: A Bridge between Algebraic Topology and Abstract Algebra“. International Journal of Science and Research (IJSR) 12, Nr. 8 (05.08.2023): 2474–77. http://dx.doi.org/10.21275/sr23824225856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Pták, Vlastimil, und Pavla Vrbová. „Algebraic spectral subspaces“. Czechoslovak Mathematical Journal 38, Nr. 2 (1988): 342–50. http://dx.doi.org/10.21136/cmj.1988.102229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Hsiang, Jieh, und Anita Wasilewska. „Automating Algebraic Proofs in Algebraic Logic“. Fundamenta Informaticae 28, Nr. 1,2 (1996): 129–40. http://dx.doi.org/10.3233/fi-1996-281208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wampler, Charles W., und Andrew J. Sommese. „Numerical algebraic geometry and algebraic kinematics“. Acta Numerica 20 (28.04.2011): 469–567. http://dx.doi.org/10.1017/s0962492911000067.

Der volle Inhalt der Quelle
Annotation:
In this article, the basic constructs of algebraic kinematics (links, joints, and mechanism spaces) are introduced. This provides a common schema for many kinds of problems that are of interest in kinematic studies. Once the problems are cast in this algebraic framework, they can be attacked by tools from algebraic geometry. In particular, we review the techniques of numerical algebraic geometry, which are primarily based on homotopy methods. We include a review of the main developments of recent years and outline some of the frontiers where further research is occurring. While numerical algebraic geometry applies broadly to any system of polynomial equations, algebraic kinematics provides a body of interesting examples for testing algorithms and for inspiring new avenues of work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Abánades, Miguel, und Wojciech Kucharz. „Algebraic equivalence of real algebraic cycles“. Annales de l’institut Fourier 49, Nr. 6 (1999): 1797–804. http://dx.doi.org/10.5802/aif.1738.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Gao, Lingyun. „Algebraic solutions of algebraic differential equations“. Applied Mathematics-A Journal of Chinese Universities 20, Nr. 1 (März 2005): 45–50. http://dx.doi.org/10.1007/s11766-005-0035-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bader, Uri, Bruno Duchesne und Jean Lécureux. „Almost algebraic actions of algebraic groups and applications to algebraic representations“. Groups, Geometry, and Dynamics 11, Nr. 2 (2017): 705–38. http://dx.doi.org/10.4171/ggd/413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

KONG, XIAOLI, HONGJIA CHEN und CHENGMING BAI. „CLASSIFICATION OF GRADED LEFT-SYMMETRIC ALGEBRAIC STRUCTURES ON WITT AND VIRASORO ALGEBRAS“. International Journal of Mathematics 22, Nr. 02 (Februar 2011): 201–22. http://dx.doi.org/10.1142/s0129167x11006751.

Der volle Inhalt der Quelle
Annotation:
We find that a compatible graded left-symmetric algebraic structure on the Witt algebra induces an indecomposable module V of the Witt algebra with one-dimensional weight spaces by its left-multiplication operators. From the classification of such modules of the Witt algebra, the compatible graded left-symmetric algebraic structures on the Witt algebra are classified. All of them are simple and they include the examples given by [Comm. Algebra32 (2004) 243–251; J. Nonlinear Math. Phys.6 (1999) 222–245]. Furthermore, we classify the central extensions of these graded left-symmetric algebras which give the compatible graded left-symmetric algebraic structures on the Virasoro algebra. They coincide with the examples given by [J. Nonlinear Math. Phys.6 (1999) 222–245].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Praeger, Cheryl E. „Kronecker classes of fields and covering subgroups of finite groups“. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 57, Nr. 1 (August 1994): 17–34. http://dx.doi.org/10.1017/s1446788700036028.

Der volle Inhalt der Quelle
Annotation:
AbstractKronecker classes of algebraci number fields were introduced by W. Jehne in an attempt to understand the extent to which the structure of an extension K: k of algebraic number fields was influenced by the decomposition of primes of k over K. He found an important link between Kronecker equivalent field extensions and a certain covering property of their Galois groups. This surveys recent contributions of Group Theory to the understanding of Kronecker equivalence of algebraic number fields. In particular some group theoretic conjectures related to the Kronecker class of an extension of bounded degree are explored.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Żołądek, Henryk. „On algebraic solutions of algebraic Pfaff equations“. Studia Mathematica 114, Nr. 2 (1995): 117–26. http://dx.doi.org/10.4064/sm-114-2-117-126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Buchner, M., und W. Kucharz. „Algebraic vector bundles over real algebraic varieties“. Bulletin of the American Mathematical Society 17, Nr. 2 (01.10.1987): 279–83. http://dx.doi.org/10.1090/s0273-0979-1987-15558-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Jamshidpey, Armin, Nicole Lemire und Éric Schost. „Algebraic construction of quasi-split algebraic tori“. Journal of Algebra and Its Applications 19, Nr. 11 (07.11.2019): 2050206. http://dx.doi.org/10.1142/s0219498820502060.

Der volle Inhalt der Quelle
Annotation:
The main purpose of this work is to give a constructive proof for a particular case of the no-name lemma. Let [Formula: see text] be a finite group, [Formula: see text] a field that is equipped with a faithful [Formula: see text]-action, and [Formula: see text] a sign permutation [Formula: see text]-lattice (see the Introduction for the definition). Then [Formula: see text] acts naturally on the group algebra [Formula: see text] of [Formula: see text] over [Formula: see text], and hence also on the quotient field [Formula: see text]. A well-known variant of the no-name lemma asserts that the invariant sub-field [Formula: see text] is a purely transcendental extension of [Formula: see text]. In other words, there exist [Formula: see text] which are algebraically independent over [Formula: see text] such that [Formula: see text]. In this paper, we give an explicit construction of suitable elements [Formula: see text].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Yuan, Pingzhi. „On algebraic approximations of certain algebraic numbers“. Journal of Number Theory 102, Nr. 1 (September 2003): 1–10. http://dx.doi.org/10.1016/s0022-314x(03)00068-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Janssen, Theo M. V. „Algebraic translations, correctness and algebraic compiler construction“. Theoretical Computer Science 199, Nr. 1-2 (Juni 1998): 25–56. http://dx.doi.org/10.1016/s0304-3975(97)00267-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Krishna, Amalendu, und Jinhyun Park. „Algebraic cobordism theory attached to algebraic equivalence“. Journal of K-Theory 11, Nr. 1 (Februar 2013): 73–112. http://dx.doi.org/10.1017/is013001028jkt210.

Der volle Inhalt der Quelle
Annotation:
AbstractBased on the algebraic cobordism theory of Levine and Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence.We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the semi-topological K0-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory.We compute our cobordism theory for some low dimensional varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Morgan, John W. „The algebraic topology of smooth algebraic varieties“. Publications mathématiques de l'IHÉS 64, Nr. 1 (Januar 1986): 185. http://dx.doi.org/10.1007/bf02699195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Daniyarova, E. Yu, A. G. Myasnikov und V. N. Remeslennikov. „Algebraic geometry over algebraic structures. II. Foundations“. Journal of Mathematical Sciences 185, Nr. 3 (01.08.2012): 389–416. http://dx.doi.org/10.1007/s10958-012-0923-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Ehrmann, Silvia, Sebastian Gries und Marc Alexander Schweitzer. „Generalization of algebraic multiscale to algebraic multigrid“. Computational Geosciences 24, Nr. 2 (21.06.2019): 683–96. http://dx.doi.org/10.1007/s10596-019-9826-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Tao, Changli, Shijie Lu und Peixin Chen. „Weakly algebraic reflexivity and strongly algebraic reflexivity“. Applied Mathematics-A Journal of Chinese Universities 17, Nr. 2 (Juni 2002): 193–98. http://dx.doi.org/10.1007/s11766-002-0045-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lindström, B. „Matroids algebraic overF(t) are algebraic overF“. Combinatorica 9, Nr. 1 (März 1989): 107–9. http://dx.doi.org/10.1007/bf02122691.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Tanimoto, Ryuji. „Algebraic torus actions on affine algebraic surfaces“. Journal of Algebra 285, Nr. 1 (März 2005): 73–97. http://dx.doi.org/10.1016/j.jalgebra.2004.10.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Voutsadakis, George. „Categorical Abstract Algebraic Logic: Referential Algebraic Semantics“. Studia Logica 101, Nr. 4 (28.06.2013): 849–99. http://dx.doi.org/10.1007/s11225-013-9500-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Davis, James F., Qayum Khan und Andrew Ranicki. „AlgebraicK–theory over the infinite dihedral group: an algebraic approach“. Algebraic & Geometric Topology 11, Nr. 4 (05.09.2011): 2391–436. http://dx.doi.org/10.2140/agt.2011.11.2391.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Grone, Robert, und Russell Merris. „Algebraic connectivity of trees“. Czechoslovak Mathematical Journal 37, Nr. 4 (1987): 660–70. http://dx.doi.org/10.21136/cmj.1987.102192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chajda, Ivan, und Petr Emanovský. „$\Sigma$-isomorphic algebraic structures“. Mathematica Bohemica 120, Nr. 1 (1995): 71–81. http://dx.doi.org/10.21136/mb.1995.125890.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Rao, Rojukurthi Sudhakar. „Algebra is the Language of Mathematics & Algebraic Philosophy is the Luggage of Mathematics“. International Journal of Research Publication and Reviews 5, Nr. 1 (24.01.2024): 4647–53. http://dx.doi.org/10.55248/gengpi.5.0124.0340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Fletcher, Colin R., und C. F. Gardiner. „Algebraic Structures“. Mathematical Gazette 71, Nr. 456 (Juni 1987): 172. http://dx.doi.org/10.2307/3616534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

De Concini, Corrado, Philippe Gille und Peter Littelmann. „Algebraic Groups“. Oberwolfach Reports 18, Nr. 2 (24.08.2022): 1087–148. http://dx.doi.org/10.4171/owr/2021/20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Bryant, Victor, und C. D. Godsil. „Algebraic Combinatorics“. Mathematical Gazette 79, Nr. 484 (März 1995): 238. http://dx.doi.org/10.2307/3620119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Brion, Michel, Jens Carsten Jantzen und Zinovy Reichstein. „Algebraic Groups“. Oberwolfach Reports 10, Nr. 2 (2013): 1025–85. http://dx.doi.org/10.4171/owr/2013/17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hacon, Christopher, Daniel Huybrechts, Yujiro Kawamata und Bernd Siebert. „Algebraic Geometry“. Oberwolfach Reports 12, Nr. 1 (2015): 783–836. http://dx.doi.org/10.4171/owr/2015/15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Drton, Mathias, Thomas Kahle, Bernd Sturmfels und Caroline Uhler. „Algebraic Statistics“. Oberwolfach Reports 14, Nr. 2 (27.04.2018): 1207–79. http://dx.doi.org/10.4171/owr/2017/20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

De Concini, Corrado, Peter Littelmann und Zinovy Reichstein. „Algebraic Groups“. Oberwolfach Reports 14, Nr. 2 (27.04.2018): 1281–347. http://dx.doi.org/10.4171/owr/2017/21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Schwarzweller, Christoph, und Agnieszka Rowińska-Schwarzweller. „Algebraic Extensions“. Formalized Mathematics 29, Nr. 1 (01.04.2021): 39–47. http://dx.doi.org/10.2478/forma-2021-0004.

Der volle Inhalt der Quelle
Annotation:
Summary In this article we further develop field theory in Mizar [1], [2], [3] towards splitting fields. We deal with algebraic extensions [4], [5]: a field extension E of a field F is algebraic, if every element of E is algebraic over F. We prove amongst others that finite extensions are algebraic and that field extensions generated by a finite set of algebraic elements are finite. From this immediately follows that field extensions generated by roots of a polynomial over F are both finite and algebraic. We also define the field of algebraic elements of E over F and show that this field is an intermediate field of E|F.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Bloom, Stephen L., und Zoltan Ésik. „Algebraic Ordinals“. Fundamenta Informaticae 99, Nr. 4 (2010): 383–407. http://dx.doi.org/10.3233/fi-2010-255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Wild, P. „ALGEBRAIC COMBINATORICS“. Bulletin of the London Mathematical Society 27, Nr. 2 (März 1995): 191–92. http://dx.doi.org/10.1112/blms/27.2.191.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kollár, János. „Algebraic hypersurfaces“. Bulletin of the American Mathematical Society 56, Nr. 4 (28.01.2019): 543–68. http://dx.doi.org/10.1090/bull/1663.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Huneke, Craig, und Bernd Ulrich. „Algebraic linkage“. Duke Mathematical Journal 56, Nr. 3 (Juni 1988): 415–29. http://dx.doi.org/10.1215/s0012-7094-88-05618-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Galaktionova, E. „algebraic groups“. Duke Mathematical Journal 77, Nr. 1 (Januar 1995): 63–69. http://dx.doi.org/10.1215/s0012-7094-95-07703-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vaninsky, Alexander. „Algebraic trigonometry“. International Journal of Mathematical Education in Science and Technology 42, Nr. 3 (15.04.2011): 406–11. http://dx.doi.org/10.1080/0020739x.2010.526307.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Watase, Yasushige. „Algebraic Numbers“. Formalized Mathematics 24, Nr. 4 (01.12.2016): 291–99. http://dx.doi.org/10.1515/forma-2016-0025.

Der volle Inhalt der Quelle
Annotation:
Summary This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial ring of ℚ[x] turns to be a field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie