Zeitschriftenartikel zum Thema „Algebraic number theory“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Algebraic number theory.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Algebraic number theory" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Blackmore, G. W., I. N. Stewart und D. O. Tall. „Algebraic Number Theory“. Mathematical Gazette 73, Nr. 463 (März 1989): 65. http://dx.doi.org/10.2307/3618234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

S., R., und Michael E. Pohst. „Computational Algebraic Number Theory.“ Mathematics of Computation 64, Nr. 212 (Oktober 1995): 1763. http://dx.doi.org/10.2307/2153389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Karve, Aneesh, und Sebastian Pauli. „GiANT: Graphical Algebraic Number Theory“. Journal de Théorie des Nombres de Bordeaux 18, Nr. 3 (2006): 721–27. http://dx.doi.org/10.5802/jtnb.569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lenstra Jr., H. W. „Algorithms in Algebraic Number Theory“. Bulletin of the American Mathematical Society 26, Nr. 2 (01.10.1992): 211–45. http://dx.doi.org/10.1090/s0273-0979-1992-00284-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Platonov, V. P., und A. S. Rapinchuk. „Algebraic groups and number theory“. Russian Mathematical Surveys 47, Nr. 2 (30.04.1992): 133–61. http://dx.doi.org/10.1070/rm1992v047n02abeh000879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Appleby, Marcus, Steven Flammia, Gary McConnell und Jon Yard. „SICs and Algebraic Number Theory“. Foundations of Physics 47, Nr. 8 (24.04.2017): 1042–59. http://dx.doi.org/10.1007/s10701-017-0090-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Belabas, Karim. „Topics in computational algebraic number theory“. Journal de Théorie des Nombres de Bordeaux 16, Nr. 1 (2004): 19–63. http://dx.doi.org/10.5802/jtnb.433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schoof, Ren\'e. „Book Review: Algorithmic algebraic number theory“. Bulletin of the American Mathematical Society 29, Nr. 1 (01.07.1993): 111–14. http://dx.doi.org/10.1090/s0273-0979-1993-00392-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Krishna, Amalendu, und Jinhyun Park. „Algebraic cobordism theory attached to algebraic equivalence“. Journal of K-Theory 11, Nr. 1 (Februar 2013): 73–112. http://dx.doi.org/10.1017/is013001028jkt210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractBased on the algebraic cobordism theory of Levine and Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence.We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the semi-topological K0-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory.We compute our cobordism theory for some low dimensional varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
10

Cremona, J. E., und Henri Cohen. „A Course in Computational Algebraic Number Theory“. Mathematical Gazette 78, Nr. 482 (Juli 1994): 221. http://dx.doi.org/10.2307/3618596.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wójcik, J. „On a problem in algebraic number theory“. Mathematical Proceedings of the Cambridge Philosophical Society 119, Nr. 2 (Februar 1996): 191–200. http://dx.doi.org/10.1017/s0305004100074090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Let K be an algebraic number field. If q is a prime ideal of the ring of integers of K and α is a number of K prime to q then Mq(α) denotes the multiplicative group generated by α modulo q. In the paper [5] there is the remark: ‘We do not know whether for all a, b, c ∈ ℚ with abc ≠ 0, |a| ≠ 1,|b| ≠ 1,|c| ≠ 1 there exist infinitely many primes q with Mq (a) = Mq (b) = Mq (c).’
12

Lagarias, Jeffrey C., und Yang Wang. „Haar Bases forL2( ) and Algebraic Number Theory“. Journal of Number Theory 76, Nr. 2 (Juni 1999): 330–36. http://dx.doi.org/10.1006/jnth.1998.2353.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Aoki, Masao. „Deformation theory of algebraic stacks“. Compositio Mathematica 141, Nr. 01 (01.12.2004): 19–34. http://dx.doi.org/10.1112/s0010437x04000806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Thompson, Robert C. „Editorial announcement: Algebraic graph theory“. Linear and Multilinear Algebra 28, Nr. 1-2 (Oktober 1990): 1. http://dx.doi.org/10.1080/03081089008818025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Tamme, Georg. „Excision in algebraic -theory revisited“. Compositio Mathematica 154, Nr. 9 (06.08.2018): 1801–14. http://dx.doi.org/10.1112/s0010437x18007236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
By a theorem of Suslin, a Tor-unital (not necessarily unital) ring satisfies excision in algebraic$K$-theory. We give a new and direct proof of Suslin’s result based on an exact sequence of categories of perfect modules. In fact, we prove a more general descent result for a pullback square of ring spectra and any localizing invariant. Our descent theorem contains not only Suslin’s result, but also Nisnevich descent of algebraic$K$-theory for affine schemes as special cases. Moreover, the role of the Tor-unitality condition becomes very transparent.
16

Mandal, Satya, und Yong Yang. „Intersection theory of algebraic obstructions“. Journal of Pure and Applied Algebra 214, Nr. 12 (Dezember 2010): 2279–93. http://dx.doi.org/10.1016/j.jpaa.2010.02.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Levine, Marc. „Intersection theory in algebraic cobordism“. Journal of Pure and Applied Algebra 221, Nr. 7 (Juli 2017): 1645–90. http://dx.doi.org/10.1016/j.jpaa.2016.12.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Stengle, Gillbert. „Algebraic theory of differential inequalities“. Communications in Algebra 19, Nr. 6 (Januar 1991): 1743–63. http://dx.doi.org/10.1080/00927879108824227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Perucca, Antonella, und Pietro Sgobba. „Kummer theory for number fields and the reductions of algebraic numbers“. International Journal of Number Theory 15, Nr. 08 (19.08.2019): 1617–33. http://dx.doi.org/10.1142/s179304211950091x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
For all number fields the failure of maximality for the Kummer extensions is bounded in a very strong sense. We give a direct proof (without relying on the Bashmakov–Ribet method) of the fact that if [Formula: see text] is a finitely generated and torsion-free multiplicative subgroup of a number field [Formula: see text] having rank [Formula: see text], then the ratio between [Formula: see text] and the Kummer degree [Formula: see text] is bounded independently of [Formula: see text]. We then apply this result to generalize to higher rank a theorem of Ziegler from 2006 about the multiplicative order of the reductions of algebraic integers (the multiplicative order must be in a given arithmetic progression, and an additional Frobenius condition may be considered).
20

Dai, Shouxin, und Marc Levine. „Connective Algebraic K-theory“. Journal of K-Theory 13, Nr. 1 (02.01.2014): 9–56. http://dx.doi.org/10.1017/is013012007jkt249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractWe examine the theory of connective algebraic K-theory, , defined by taking the −1 connective cover of algebraic K-theory with respect to Voevodsky's slice tower in the motivic stable homotopy category. We extend to a bi-graded oriented duality theory when the base scheme is the spectrum of a field k of characteristic zero. The homology theory may be viewed as connective algebraic G-theory. We identify for X a finite type k-scheme with the image of in , where is the abelian category of coherent sheaves on X with support in dimension at most n; this agrees with the (2n,n) part of the theory of connective algebraic K-theory defined by Cai. We also show that the classifying map from algebraic cobordism identifies with the universal oriented Borel-Moore homology theory having formal group law u + υ − βuυ with coefficient ring ℤ[β]. As an application, we show that every pure dimension d finite type k-scheme has a well-defined fundamental class [X]CK in ΩdCK(X), and this fundamental class is functorial with respect to pull-back for l.c.i. morphisms.
21

Baumslag, Gilbert, Alexei Myasnikov und Vladimir Remeslennikov. „Algebraic Geometry over Groups I. Algebraic Sets and Ideal Theory“. Journal of Algebra 219, Nr. 1 (September 1999): 16–79. http://dx.doi.org/10.1006/jabr.1999.7881.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

van Hoeij, Mark, und Vivek Pal. „Isomorphisms of algebraic number fields“. Journal de Théorie des Nombres de Bordeaux 24, Nr. 2 (2012): 293–305. http://dx.doi.org/10.5802/jtnb.797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Aragona, J., A. R. G. Garcia und S. O. Juriaans. „Algebraic theory of Colombeauʼs generalized numbers“. Journal of Algebra 384 (Juni 2013): 194–211. http://dx.doi.org/10.1016/j.jalgebra.2013.03.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Yuan, Pingzhi. „On algebraic approximations of certain algebraic numbers“. Journal of Number Theory 102, Nr. 1 (September 2003): 1–10. http://dx.doi.org/10.1016/s0022-314x(03)00068-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lagarias, Jeffrey C., und Yang Wang. „Haar Bases forL2(Rn) and Algebraic Number Theory“. Journal of Number Theory 57, Nr. 1 (März 1996): 181–97. http://dx.doi.org/10.1006/jnth.1996.0042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Kelly, Shane, und Matthew Morrow. „K-theory of valuation rings“. Compositio Mathematica 157, Nr. 6 (20.05.2021): 1121–42. http://dx.doi.org/10.1112/s0010437x21007119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We prove several results showing that the algebraic $K$-theory of valuation rings behaves as though such rings were regular Noetherian, in particular an analogue of the Geisser–Levine theorem. We also give some new proofs of known results concerning cdh descent of algebraic $K$-theory.
27

Ozan, Yildiray. „On algebraic K-theory of real algebraic varieties with circle action“. Journal of Pure and Applied Algebra 170, Nr. 2-3 (Mai 2002): 287–93. http://dx.doi.org/10.1016/s0022-4049(01)00129-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Tanimoto, Ryuji. „Algebraic torus actions on affine algebraic surfaces“. Journal of Algebra 285, Nr. 1 (März 2005): 73–97. http://dx.doi.org/10.1016/j.jalgebra.2004.10.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Pezlar, Zdeněk. „Solving Diophantine Equations by Factoring in Number Fields“. Journal of the ASB Society 2, Nr. 1 (27.12.2021): 29–34. http://dx.doi.org/10.51337/jasb20211227004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this text we provide an introduction to algebraic number theory and show its applications in solving certain difficult diophantine equations. We begin with a quick summary of the theory of quadratic residues, before diving into a select few areas of algebraic number theory. Our article is accompanied by a couple of worked problems and exercises for the reader to tackle on their own.
30

Duflot, Jeanne, und C. Tyrel Marak. „A filtration in algebraic K-theory“. Journal of Pure and Applied Algebra 151, Nr. 2 (Juli 2000): 135–62. http://dx.doi.org/10.1016/s0022-4049(99)00050-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Dickmann, M., und F. Miraglia. „Algebraic K-theory of special groups“. Journal of Pure and Applied Algebra 204, Nr. 1 (Januar 2006): 195–234. http://dx.doi.org/10.1016/j.jpaa.2005.04.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kida, Masanari. „Kummer theory for norm algebraic tori“. Journal of Algebra 293, Nr. 2 (November 2005): 427–47. http://dx.doi.org/10.1016/j.jalgebra.2005.06.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Grayson, Daniel R. „Universal exactness in algebraic K-theory“. Journal of Pure and Applied Algebra 36 (1985): 139–41. http://dx.doi.org/10.1016/0022-4049(85)90066-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Shimakawa, Kazuhisa. „Multiple categories and algebraic K-theory“. Journal of Pure and Applied Algebra 41 (1986): 285–304. http://dx.doi.org/10.1016/0022-4049(86)90114-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Perucca, Antonella, und Pietro Sgobba. „Kummer Theory for Number Fields and the Reductions of Algebraic Numbers II“. Uniform distribution theory 15, Nr. 1 (01.06.2020): 75–92. http://dx.doi.org/10.2478/udt-2020-0004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractLet K be a number field, and let G be a finitely generated and torsion-free subgroup of K×. For almost all primes p of K, we consider the order of the cyclic group (G mod 𝔭), and ask whether this number lies in a given arithmetic progression. We prove that the density of primes for which the condition holds is, under some general assumptions, a computable rational number which is strictly positive. We have also discovered the following equidistribution property: if ℓe is a prime power and a is a multiple of ℓ (and a is a multiple of 4 if ℓ =2), then the density of primes 𝔭 of K such that the order of (G mod 𝔭) is congruent to a modulo ℓe only depends on a through its ℓ-adic valuation.
36

Khanduja, Sudesh K. „The discriminant of compositum of algebraic number fields“. International Journal of Number Theory 15, Nr. 02 (März 2019): 353–60. http://dx.doi.org/10.1142/s1793042119500167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
For an algebraic number field [Formula: see text], let [Formula: see text] denote the discriminant of an algebraic number field [Formula: see text]. It is well known that if [Formula: see text] are algebraic number fields with coprime discriminants, then [Formula: see text] are linearly disjoint over the field [Formula: see text] of rational numbers and [Formula: see text], [Formula: see text] being the degree of [Formula: see text] over [Formula: see text]. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields [Formula: see text] linearly disjoint over [Formula: see text].
37

Kramer, Linus, und Katrin Tent. „Algebraic Polygons“. Journal of Algebra 182, Nr. 2 (Juni 1996): 435–47. http://dx.doi.org/10.1006/jabr.1996.0179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ensor, A. „Algebraic coalitions“. algebra universalis 38, Nr. 1 (Dezember 1997): 1–14. http://dx.doi.org/10.1007/s000120050035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Abouzahra, M., und L. Lewin. „The polylogarithm in algebraic number fields“. Journal of Number Theory 21, Nr. 2 (Oktober 1985): 214–44. http://dx.doi.org/10.1016/0022-314x(85)90052-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Rausch, U. „Character Sums in Algebraic Number Fields“. Journal of Number Theory 46, Nr. 2 (Februar 1994): 179–95. http://dx.doi.org/10.1006/jnth.1994.1011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Fischler, Stéphane. „Orbits under algebraic groups and logarithms of algebraic numbers“. Acta Arithmetica 100, Nr. 2 (2001): 167–87. http://dx.doi.org/10.4064/aa100-2-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Nishioka, Kumiko. „Algebraic independence of certain power series of algebraic numbers“. Journal of Number Theory 23, Nr. 3 (Juli 1986): 354–64. http://dx.doi.org/10.1016/0022-314x(86)90080-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Nauryzbayev, N. Zh, G. E. Taugynbayev und M. Beisenbek. „Application aspects of algebraic number theory in financial mathematics“. Bulletin of L.N. Gumilyov Eurasian National University. Mathematics. Computer Sciences. Mechanics series 130, Nr. 1 (2020): 93–102. http://dx.doi.org/10.32523/2616-7182/2020-130-1-93-102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kleiner, Israel. „The Roots of Commutative Algebra in Algebraic Number Theory“. Mathematics Magazine 68, Nr. 1 (01.02.1995): 3. http://dx.doi.org/10.2307/2691370.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Trotter, Hale. „Book Review: A course in computational algebraic number theory“. Bulletin of the American Mathematical Society 31, Nr. 2 (01.10.1994): 312–19. http://dx.doi.org/10.1090/s0273-0979-1994-00542-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kleiner, Israel. „The Roots of Commutative Algebra in Algebraic Number Theory“. Mathematics Magazine 68, Nr. 1 (Februar 1995): 3–15. http://dx.doi.org/10.1080/0025570x.1995.11996267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Guàrdia, Jordi, Jesús Montes und Enric Nart. „Newton polygons of higher order in algebraic number theory“. Transactions of the American Mathematical Society 364, Nr. 1 (01.01.2012): 361–416. http://dx.doi.org/10.1090/s0002-9947-2011-05442-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Hong, Haibo, Licheng Wang, Haseeb Ahmad, Jing Li, Yixian Yang und Changzhong Wu. „Construction of DNA codes by using algebraic number theory“. Finite Fields and Their Applications 37 (Januar 2016): 328–43. http://dx.doi.org/10.1016/j.ffa.2015.10.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Gauthier, Yvon. „On Cantor's normal form theorem and algebraic number theory“. International Journal of Algebra 12, Nr. 3 (2018): 133–40. http://dx.doi.org/10.12988/ija.2018.8413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Guo, Xiao Qiang, und Zheng Jun He. „The Applications of Group Theory“. Advanced Materials Research 430-432 (Januar 2012): 1265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Since the classification of finite simple groups completed last century, the applications of group theory are more and more widely. We first introduce the connection of groups and symmetry. And then we respectively introduce the applications of group theory in polynomial equation, algebraic topology, algebraic geometry , cryptography, algebraic number theory, physics and chemistry.

Zur Bibliographie