Dissertationen zum Thema „Algebraic fields“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Algebraic fields" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Hartsell, Melanie Lynne. „Algebraic Number Fields“. Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc501201/.
Der volle Inhalt der QuelleLötter, Ernest C. „On towers of function fields over finite fields /“. Link to the online version, 2007. http://hdl.handle.net/10019.1/1283.
Der volle Inhalt der QuelleGanz, Jürg Werner. „Algebraic complexity in finite fields /“. Zürich, 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10867.
Der volle Inhalt der QuelleSwanson, Colleen M. „Algebraic number fields and codes /“. Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.
Der volle Inhalt der QuelleRovi, Carmen. „Algebraic Curves over Finite Fields“. Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.
Der volle Inhalt der QuelleThis thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known.
At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.
Rozario, Rebecca. „The Distribution of the Irreducibles in an Algebraic Number Field“. Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.
Der volle Inhalt der QuelleAlm, Johan. „Universal algebraic structures on polyvector fields“. Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100775.
Der volle Inhalt der QuelleBode, Benjamin. „Knotted fields and real algebraic links“. Thesis, University of Bristol, 2018. http://hdl.handle.net/1983/8527a201-2fba-4e7e-8481-3df228051413.
Der volle Inhalt der QuelleMcCoy, Daisy Cox. „Irreducible elements in algebraic number fields“. Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.
Der volle Inhalt der QuelleAlnaser, Ala' Jamil. „Waring's problem in algebraic number fields“. Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2207.
Der volle Inhalt der QuelleLotter, Ernest Christiaan. „On towers of function fields over finite fields“. Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1283.
Der volle Inhalt der QuelleExplicit towers of algebraic function fields over finite fields are studied by considering their ramification behaviour and complete splitting. While the majority of towers in the literature are recursively defined by a single defining equation in variable separated form at each step, we consider towers which may have different defining equations at each step and with arbitrary defining polynomials. The ramification and completely splitting loci are analysed by directed graphs with irreducible polynomials as vertices. Algorithms are exhibited to construct these graphs in the case of n-step and -finite towers. These techniques are applied to find new tamely ramified n-step towers for 1 n 3. Various new tame towers are found, including a family of towers of cubic extensions for which numerical evidence suggests that it is asymptotically optimal over the finite field with p2 elements for each prime p 5. Families of wildly ramified Artin-Schreier towers over small finite fields which are candidates to be asymptotically good are also considered using our method.
Buyruk, Dilek. „On Algebraic Function Fields With Class Number Three“. Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613080/index.pdf.
Der volle Inhalt der Quelleulya T¨
ore. Let k := Fq(T) be the rational function field over the finite field Fq with q elements. For a polynomial N &isin
Fq[T], we construct the Nth cyclotomic function field KN. Cyclotomic function fields were investigated by Carlitz, studied by Hayes, M. Rosen, M. Bilhan and many other mathematicians. Classification of cyclotomic function fields and subfields of cyclotomic function fields with class number one is done by Kida, Murabayashi, Ahn and Jung. Also the classification of function fields with genus one and classification of those with class number two is done by Ahn and Jung. In this thesis, we classified all algebraic function fields and subfields of cyclotomic function fields over finite fields with class number three.
Röer, Andrew. „On vector fields on singular algebraic surfaces“. Thesis, University of Warwick, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415254.
Der volle Inhalt der QuelleAlaca, Saban Carleton University Dissertation Mathematics and Statistics. „P-Integral bases of algebraic number fields“. Ottawa, 1994.
Den vollen Inhalt der Quelle findenHan, Ilseop. „Tractibility of algebraic function fields in one variable over global fields /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9944223.
Der volle Inhalt der QuelleVoloch, J. F. „Curves over finite fields“. Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355283.
Der volle Inhalt der QuelleHughes, Garry. „Distribution of additive functions in algebraic number fields“. Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.
Der volle Inhalt der QuelleJogia, Danesh Michael Mathematics & Statistics Faculty of Science UNSW. „Algebraic aspects of integrability and reversibility in maps“. Publisher:University of New South Wales. Mathematics & Statistics, 2008. http://handle.unsw.edu.au/1959.4/40947.
Der volle Inhalt der QuelleKosick, Pamela. „Commutative semifields of odd order and planar Dembowski-Ostrom polynomials“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 104 p, 2010. http://proquest.umi.com/pqdweb?did=1992491941&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Der volle Inhalt der QuelleRiccomagno, Eva M. „Algebraic geometry in experimental design and related fields“. Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263314.
Der volle Inhalt der QuelleBerardini, Elena. „Algebraic geometry codes from surfaces over finite fields“. Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0170.
Der volle Inhalt der QuelleIn this thesis we provide a theoretical study of algebraic geometry codes from surfaces defined over finite fields. We prove lower bounds for the minimum distance of codes over surfaces whose canonical divisor is either nef or anti-strictly nef and over surfaces without irreducible curves of small genus. We sharpen these lower bounds for surfaces whose arithmetic Picard number equals one, surfaces without curves with small self-intersection and fibered surfaces. Then we apply these bounds to surfaces embedded in P3. A special attention is given to codes constructed from abelian surfaces. In this context we give a general bound on the minimum distance and we prove that this estimation can be sharpened under the assumption that the abelian surface does not contain absolutely irreducible curves of small genus. In this perspective we characterize all abelian surfaces which do not contain absolutely irreducible curves of genus up to 2. This approach naturally leads us to consider Weil restrictions of elliptic curves and abelian surfaces which do not admit a principal polarization
Wuria, Muhammad Ameen Hussein. „Invariant algebraic surfaces in three dimensional vector fields“. Thesis, University of Plymouth, 2016. http://hdl.handle.net/10026.1/4417.
Der volle Inhalt der QuelleAbbott, John Anthony. „On the factorization of polynomials over algebraic fields“. Thesis, University of Bath, 1988. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234672.
Der volle Inhalt der QuelleKribs, Richard A. „Fields with minimal discriminants : an empirical study“. Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1314333.
Der volle Inhalt der QuelleDepartment of Mathematical Sciences
曾紹祺 und Shiu-kei Tsang. „A survey on Golomb's Conjectures and Costas Arrays“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B42575345.
Der volle Inhalt der QuelleTsang, Shiu-kei. „A survey on Golomb's Conjectures and Costas Arrays“. Click to view the E-thesis via HKUTO, 1999. http://sunzi.lib.hku.hk/hkuto/record/B42575345.
Der volle Inhalt der QuelleBoulanger, Nicolas. „Algebraic aspects of gravity and higher spsin gauge fields“. Doctoral thesis, Universite Libre de Bruxelles, 2003. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211290.
Der volle Inhalt der QuellePanario, Rodriguez Daniel Nelson. „Combinatorial and algebraic aspects of polynomials over finite fields“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0016/NQ28297.pdf.
Der volle Inhalt der QuelleGrimm, David [Verfasser]. „Sums of Squares in Algebraic Function Fields / David Grimm“. Konstanz : Bibliothek der Universität Konstanz, 2011. http://d-nb.info/1024034984/34.
Der volle Inhalt der QuelleCobbe, Alessandro. „Steinitz classes of tamely rami ed Galois extensions of algebraic number fields“. Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85661.
Der volle Inhalt der QuelleMinardi, John. „Iwasawa modules for [p-adic]-extensions of algebraic number fields /“. Thesis, Connect to this title online; UW restricted, 1986. http://hdl.handle.net/1773/5742.
Der volle Inhalt der QuellePizzato, Marco. „Some Problems Concerning Polynomials over Finite Fields, or Algebraic Divertissements“. Doctoral thesis, Università degli studi di Trento, 2013. https://hdl.handle.net/11572/367913.
Der volle Inhalt der QuellePizzato, Marco. „Some Problems Concerning Polynomials over Finite Fields, or Algebraic Divertissements“. Doctoral thesis, University of Trento, 2013. http://eprints-phd.biblio.unitn.it/1121/1/PizzatoPhDThesisbis.pdf.
Der volle Inhalt der QuelleBeyronneau, Robert Lewis. „The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples“. CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2700.
Der volle Inhalt der QuelleDucet, Virgile. „Construction of algebraic curves with many rational points over finite fields“. Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4043/document.
Der volle Inhalt der QuelleThe study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points
Aubertin, Bruce Lyndon. „Algebraic numbers and harmonic analysis in the p-series case“. Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/30282.
Der volle Inhalt der QuelleScience, Faculty of
Mathematics, Department of
Graduate
Aleem, Hosam Abdel. „An algebraic approach to modelling the regulation of gene expression“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/an-algebraic-approach-to-modelling-the-regulation-of-gene-expression(d5d400b5-690e-4f32-9fd6-c80e4db455f3).html.
Der volle Inhalt der QuelleSorolla, Bardají Jordi. „On the algebraic limit cycles of quadratic systems“. Doctoral thesis, Universitat Autònoma de Barcelona, 2005. http://hdl.handle.net/10803/3089.
Der volle Inhalt der QuelleLotter, Ernest Christiaan. „Explicit constructions of asymptotically good towers of function fields“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53417.
Der volle Inhalt der QuelleENGLISH ABSTRACT: A tower of global function fields :F = (FI, F2' ... ) is an infinite tower of separable extensions of algebraic function fields of one variable such that the constituent function fields have the same (finite) field of constants and the genus of these tend to infinity. A study can be made of the asymptotic behaviour of the ratio of the number of places of degree one over the genus of FJWq as i tends to infinity. A tower is called asymptotically good if this limit is a positive number. The well-known Drinfeld- Vladut bound provides a general upper bound for this limit. In practise, asymptotically good towers are rare. While the first examples were non-explicit, we focus on explicit towers of function fields, that is towers where equations recursively defining the extensions Fi+d F; are known. It is known that if the field of constants of the tower has square cardinality, it is possible to attain the Drinfeld- Vladut upper bound for this limit, even in the explicit case. If the field of constants does not have square cardinality, it is unknown how close the limit of the tower can come to this upper bound. In this thesis, we will develop the theory required to construct and analyse the asymptotic behaviour of explicit towers of function fields. Various towers will be exhibited, and general families of explicit formulae for which the splitting behaviour and growth of the genus can be computed in a tower will be discussed. When the necessary theory has been developed, we will focus on the case of towers over fields of non-square cardinality and the open problem of how good the asymptotic behaviour of the tower can be under these circumstances.
AFRIKAANSE OPSOMMING: 'n Toring van globale funksieliggame F = (FI, F2' ... ) is 'n oneindige toring van skeibare uitbreidings van algebraïese funksieliggame van een veranderlike sodat die samestellende funksieliggame dieselfde (eindige) konstante liggaam het en die genus streef na oneindig. 'n Studie kan gemaak word van die asimptotiese gedrag van die verhouding van die aantal plekke van graad een gedeel deur die genus van Fi/F q soos i streef na oneindig. 'n Toring word asimptoties goed genoem as hierdie limiet 'n positiewe getal is. Die bekende Drinfeld- Vladut grens verskaf 'n algemene bogrens vir hierdie limiet. In praktyk is asimptoties goeie torings skaars. Terwyl die eerste voorbeelde nie eksplisiet was nie, fokus ons op eksplisiete torings, dit is torings waar die vergelykings wat rekursief die uitbreidings Fi+d F; bepaal bekend is. Dit is bekend dat as die kardinaliteit van die konstante liggaam van die toring 'n volkome vierkant is, dit moontlik is om die Drinfeld- Vladut bogrens vir die limiet te behaal, selfs in die eksplisiete geval. As die konstante liggaam nie 'n kwadratiese kardinaliteit het nie, is dit onbekend hoe naby die limiet van die toring aan hierdie bogrens kan kom. In hierdie tesis salons die teorie ontwikkel wat benodig word om eksplisiete torings van funksieliggame te konstrueer, en hulle asimptotiese gedrag te analiseer. Verskeie torings sal aangebied word en algemene families van eksplisiete formules waarvoor die splitsingsgedrag en groei van die genus in 'n toring bereken kan word, sal bespreek word. Wanneer die nodige teorie ontwikkel is, salons fokus op die geval van torings oor liggame waarvan die kardinaliteit nie 'n volkome vierkant is nie, en op die oop probleem aangaande hoe goed die asimptotiese gedrag van 'n toring onder hierdie omstandighede kan wees.
Gould, Miles. „Coherence for categorified operadic theories“. Connect to e-thesis, 2008. http://theses.gla.ac.uk/689/.
Der volle Inhalt der QuellePh.D. thesis submitted to the Faculty of Information and Mathematical Sciences, Department of Mathematics, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Hinkelmann, Franziska Babette. „Algebraic theory for discrete models in systems biology“. Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/28509.
Der volle Inhalt der QuellePh. D.
Hall-Seelig, Laura. „Asymptotically good towers of global function fields and bounds for the Ihara function“. Amherst, Mass. : University of Massachusetts Amherst, 2009. http://scholarworks.umass.edu/dissertations/AAI3372263/.
Der volle Inhalt der QuelleLavallee, Melisa Jean. „Dihedral quintic fields with a power basis“. Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2788.
Der volle Inhalt der QuelleKrapp, Lothar Sebastian [Verfasser]. „Algebraic and Model Theoretic Properties of O-minimal Exponential Fields / Lothar Sebastian Krapp“. Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1202012558/34.
Der volle Inhalt der QuelleMohamed, Mostafa Hosni [Verfasser]. „Algebraic decoding over finite and complex fields using reliability information / Mostafa Hosni Mohamed“. Ulm : Universität Ulm, 2018. http://d-nb.info/1150781041/34.
Der volle Inhalt der QuelleKurtaran, Ozbudak Elif. „Results On Some Authentication Codes“. Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610350/index.pdf.
Der volle Inhalt der QuelleOi, Masao. „On ramifications of Artin-Schreier extensions of surfaces over algebraically closed fields of positive characteristic I“. 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/193564.
Der volle Inhalt der QuelleKyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第18639号
理博第4018号
新制||理||1579(附属図書館)
31553
京都大学大学院理学研究科数学・数理解析専攻
(主査)教授 池田 保, 教授 雪江 明彦, 教授 上田 哲生
学位規則第4条第1項該当
Banaszak, Grzegorz. „Algebraic K-theory of number fields and rings of integers and the Stickelberger ideal /“. The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487676261012829.
Der volle Inhalt der QuelleJacobs, G. Tony. „Reduced Ideals and Periodic Sequences in Pure Cubic Fields“. Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804842/.
Der volle Inhalt der QuelleSolanki, Nikesh. „Uniform companions for expansions of large differential fields“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/uniform-companions-for-expansions-of-large-differential-fields(a565a0d0-24b5-40a6-a414-5ead1631bc8d).html.
Der volle Inhalt der Quelle