Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Algebraic fields“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Algebraic fields" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Algebraic fields"
JARDEN, MOSHE, und ALEXANDRA SHLAPENTOKH. „DECIDABLE ALGEBRAIC FIELDS“. Journal of Symbolic Logic 82, Nr. 2 (Juni 2017): 474–88. http://dx.doi.org/10.1017/jsl.2017.10.
Der volle Inhalt der QuelleKuz'min, L. V. „Algebraic number fields“. Journal of Soviet Mathematics 38, Nr. 3 (August 1987): 1930–88. http://dx.doi.org/10.1007/bf01093434.
Der volle Inhalt der QuellePraeger, Cheryl E. „Kronecker classes of fields and covering subgroups of finite groups“. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 57, Nr. 1 (August 1994): 17–34. http://dx.doi.org/10.1017/s1446788700036028.
Der volle Inhalt der QuelleChudnovsky, D. V., und G. V. Chudnovsky. „Algebraic complexities and algebraic curves over finite fields“. Journal of Complexity 4, Nr. 4 (Dezember 1988): 285–316. http://dx.doi.org/10.1016/0885-064x(88)90012-x.
Der volle Inhalt der QuelleBost, Jean-Benoît. „Algebraic leaves of algebraic foliations over number fields“. Publications mathématiques de l'IHÉS 93, Nr. 1 (September 2001): 161–221. http://dx.doi.org/10.1007/s10240-001-8191-3.
Der volle Inhalt der QuelleChudnovsky, D. V., und G. V. Chudnovsky. „Algebraic complexities and algebraic curves over finite fields“. Proceedings of the National Academy of Sciences 84, Nr. 7 (01.04.1987): 1739–43. http://dx.doi.org/10.1073/pnas.84.7.1739.
Der volle Inhalt der QuelleBeyarslan, Özlem, und Ehud Hrushovski. „On algebraic closure in pseudofinite fields“. Journal of Symbolic Logic 77, Nr. 4 (Dezember 2012): 1057–66. http://dx.doi.org/10.2178/jsl.7704010.
Der volle Inhalt der QuelleJunker, Markus, und Jochen Koenigsmann. „Schlanke Körper (Slim fields)“. Journal of Symbolic Logic 75, Nr. 2 (Juni 2010): 481–500. http://dx.doi.org/10.2178/jsl/1268917491.
Der volle Inhalt der QuelleKEKEÇ, GÜLCAN. „-NUMBERS IN FIELDS OF FORMAL POWER SERIES OVER FINITE FIELDS“. Bulletin of the Australian Mathematical Society 101, Nr. 2 (29.07.2019): 218–25. http://dx.doi.org/10.1017/s0004972719000832.
Der volle Inhalt der QuelleRestuccia, Gaetana. „Algebraic models in different fields“. Applied Mathematical Sciences 8 (2014): 8345–51. http://dx.doi.org/10.12988/ams.2014.411922.
Der volle Inhalt der QuelleDissertationen zum Thema "Algebraic fields"
Hartsell, Melanie Lynne. „Algebraic Number Fields“. Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc501201/.
Der volle Inhalt der QuelleLötter, Ernest C. „On towers of function fields over finite fields /“. Link to the online version, 2007. http://hdl.handle.net/10019.1/1283.
Der volle Inhalt der QuelleGanz, Jürg Werner. „Algebraic complexity in finite fields /“. Zürich, 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10867.
Der volle Inhalt der QuelleSwanson, Colleen M. „Algebraic number fields and codes /“. Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.
Der volle Inhalt der QuelleRovi, Carmen. „Algebraic Curves over Finite Fields“. Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.
Der volle Inhalt der QuelleThis thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known.
At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.
Rozario, Rebecca. „The Distribution of the Irreducibles in an Algebraic Number Field“. Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.
Der volle Inhalt der QuelleAlm, Johan. „Universal algebraic structures on polyvector fields“. Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100775.
Der volle Inhalt der QuelleBode, Benjamin. „Knotted fields and real algebraic links“. Thesis, University of Bristol, 2018. http://hdl.handle.net/1983/8527a201-2fba-4e7e-8481-3df228051413.
Der volle Inhalt der QuelleMcCoy, Daisy Cox. „Irreducible elements in algebraic number fields“. Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.
Der volle Inhalt der QuelleAlnaser, Ala' Jamil. „Waring's problem in algebraic number fields“. Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2207.
Der volle Inhalt der QuelleBücher zum Thema "Algebraic fields"
Janusz, Gerald J. Algebraic number fields. 2. Aufl. Providence, R.I: American Mathematical Society, 1996.
Den vollen Inhalt der Quelle findenMoreno, Carlos. Algebraic curvesover finite fields. Cambridge: Cambridge University Press, 1991.
Den vollen Inhalt der Quelle findenBenedetti, R. Real algebraic and semi-algebraic sets. Paris: Hermann, 1990.
Den vollen Inhalt der Quelle findenMarcus, Daniel A. Number fields. 3. Aufl. New York: Springer-Verlag, 1995.
Den vollen Inhalt der Quelle findenJacobson, Nathan. Finite-dimensional division algebras over fields. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenHo, Chung-jen. Multiple extension algebraic number fields. New York: Courant Institute of Mathematical Sciences, New York University, 1989.
Den vollen Inhalt der Quelle findenHo, Chung-jen. Multiple extension algebraic number fields. New York: Courant Institute of Mathematical Sciences, New York University, 1989.
Den vollen Inhalt der Quelle findenHo, Chung-jen. Multiple extension algebraic number fields. New York: Courant Institute of Mathematical Sciences, New York University, 1989.
Den vollen Inhalt der Quelle findenSerre, Jean-Pierre. Algebraic Groups and Class Fields. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-1035-1.
Der volle Inhalt der QuelleStichtenoth, H. Algebraic function fields and codes. 2. Aufl. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Algebraic fields"
Kempf, George R. „Fields“. In Algebraic Structures, 42–52. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-80278-1_5.
Der volle Inhalt der QuelleCohn, P. M. „Global fields“. In Algebraic Numbers and Algebraic Functions, 83–108. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3444-4_3.
Der volle Inhalt der QuelleCohn, P. M. „Function fields“. In Algebraic Numbers and Algebraic Functions, 109–75. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3444-4_4.
Der volle Inhalt der QuelleCohn, P. M. „Fields with valuations“. In Algebraic Numbers and Algebraic Functions, 1–42. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3444-4_1.
Der volle Inhalt der QuelleBochnak, Jacek, Michel Coste und Marie-Françoise Roy. „Ordered Fields, Real Closed Fields“. In Real Algebraic Geometry, 7–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03718-8_2.
Der volle Inhalt der QuellePohst, Michael E. „Algebraic number fields“. In Computational Algebraic Number Theory, 27–33. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8589-8_4.
Der volle Inhalt der QuelleBordellès, Olivier. „Algebraic Number Fields“. In Universitext, 517–673. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54946-6_7.
Der volle Inhalt der QuelleWeil, André. „Algebraic number-fields“. In Basic Number Theory, 80–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61945-8_5.
Der volle Inhalt der QuelleIwasawa, Kenkichi. „Algebraic Number Fields“. In Hecke’s L-functions, 1–7. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9495-9_1.
Der volle Inhalt der QuelleBordellès, Olivier. „Algebraic Number Fields“. In Universitext, 355–482. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4096-2_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Algebraic fields"
Boku, Dereje Kifle, Wolfram Decker, Claus Fieker und Andreas Steenpass. „Gröbner bases over algebraic number fields“. In PASCO '15: International Workshop on Parallel Symbolic Computation. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2790282.2790284.
Der volle Inhalt der QuelleValasek, Gabor, und Robert Ban. „Higher Order Algebraic Signed Distance Fields“. In CAD'22. CAD Solutions LLC, 2022. http://dx.doi.org/10.14733/cadconfp.2022.287-291.
Der volle Inhalt der QuelleVoight, John. „Curves over finite fields with many points: an introduction“. In Computational Aspects of Algebraic Curves. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701640_0010.
Der volle Inhalt der QuelleEfrat, Ido. „Recovering higher global and local fields from Galois groups – an algebraic approach“. In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.273.
Der volle Inhalt der QuelleKapranov, Mikhail. „Harmonic analysis on algebraic groups over two-dimensional local fields of equal characteristic“. In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.255.
Der volle Inhalt der QuelleTamura, Jun-ichi, Shin-ichi Yasutomi und Takao Komatsu. „Algebraic Jacobi-Perron algorithm for biquadratic numbers“. In DIOPHANTINE ANALYSIS AND RELATED FIELDS—2010: DARF—2010. AIP, 2010. http://dx.doi.org/10.1063/1.3478174.
Der volle Inhalt der QuelleHajime, Kaneko, und Takao Komatsu. „Expansion of real numbers by algebraic numbers“. In DIOPHANTINE ANALYSIS AND RELATED FIELDS: DARF 2007/2008. AIP, 2008. http://dx.doi.org/10.1063/1.2841897.
Der volle Inhalt der QuelleHuang, Yu-Chih. „Lattice index codes from algebraic number fields“. In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282903.
Der volle Inhalt der QuelleTanaka, Taka-aki, Masaaki Amou und Masanori Katsurada. „Algebraic independence properties related to certain infinite products“. In DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011: DARF - 2011. AIP, 2011. http://dx.doi.org/10.1063/1.3630047.
Der volle Inhalt der QuelleEncarnación, Mark J. „Factoring polynomials over algebraic number fields via norms“. In the 1997 international symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/258726.258802.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Algebraic fields"
Paquette, Natalie. Higher Algebraic Structures in Field Theory & Holography. Office of Scientific and Technical Information (OSTI), Januar 2024. http://dx.doi.org/10.2172/2282341.
Der volle Inhalt der QuelleXiao, M. DA (Differential Algebraic) Method and Symplectification for Field Map Generated Matrices of Siberian Snake. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/1149860.
Der volle Inhalt der QuelleSchoen, Robert C., Daniel Anderson und Charity Bauduin. Elementary Mathematics Student Assessment: Measuring Grade 3, 4, and 5 Students’ Performace in Number (Whole Numbers and Fractions), Operations, and Algebraic Thinking in Spring 2016. Florida State University Library, Mai 2018. http://dx.doi.org/10.33009/fsu.1653497279.
Der volle Inhalt der QuelleChang, P. A Differential Algebraic Integration Algorithm for Symplectic Mappings in Systems with Three-Dimensional Magnetic Field. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833057.
Der volle Inhalt der QuelleBayak, Igor V. Applications of the Local Algebras of Vector Fields to the Modelling of Physical Phenomena. Jgsp, 2015. http://dx.doi.org/10.7546/jgsp-38-2015-1-23.
Der volle Inhalt der QuelleCaspi, S., M. Helm, L. J. Laslett und V. O. Brady. An approach to 3D magnetic field calculation using numerical and differential algebra methods. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/7252409.
Der volle Inhalt der Quelle