Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Aléas~logiques (SEU)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Aléas~logiques (SEU)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Aléas~logiques (SEU)"
Assoum, Ammar. „Etude de la tolérance aux aléas logiques des réseaux de neurones artificiels“. Phd thesis, Grenoble INPG, 1997. http://tel.archives-ouvertes.fr/tel-00004913.
Der volle Inhalt der QuelleMalherbe, Victor. „Multi-scale modeling of radiation effects for emerging space electronics : from transistors to chips in orbit“. Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0753/document.
Der volle Inhalt der QuelleThe effects of cosmic radiation on electronics have been studied since the early days of space exploration, given the severe reliability constraints arising from harsh space environments. However, recent evolutions in the space industry landscape are changing radiation effects practices and methodologies, with mainstream technologies becoming increasingly attractive for radiation-hardened integrated circuits. Due to their high operating frequencies, new transistor architectures, and short rad-hard development times, chips manufactured in latest CMOS processes pose a variety of challenges, both from an experimental standpoint and for modeling perspectives. This work thus focuses on simulating single-event upsets and transients in advanced FD-SOI and bulk silicon processes.The soft-error response of 28 nm FD-SOI transistors is first investigated through TCAD simulations, allowing to develop two innovative models for radiation-induced currents in FD-SOI. One of them is mainly behavioral, while the other captures complex phenomena, such as parasitic bipolar amplification and circuit feedback effects, from first semiconductor principles and in agreement with detailed TCAD simulations.These compact models are then interfaced to a complete Monte Carlo Soft-Error Rate (SER) simulation platform, leading to extensive validation against experimental data collected on several test vehicles under accelerated particle beams. Finally, predictive simulation studies are presented on bit-cells, sequential and combinational logic gates in 28 nm FD-SOI and 65 nm bulk Si, providing insights into the mechanisms that contribute to the SER of modern integrated circuits in orbit
Malherbe, Victor. „Multi-scale modeling of radiation effects for emerging space electronics : from transistors to chips in orbit“. Electronic Thesis or Diss., Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0753.
Der volle Inhalt der QuelleThe effects of cosmic radiation on electronics have been studied since the early days of space exploration, given the severe reliability constraints arising from harsh space environments. However, recent evolutions in the space industry landscape are changing radiation effects practices and methodologies, with mainstream technologies becoming increasingly attractive for radiation-hardened integrated circuits. Due to their high operating frequencies, new transistor architectures, and short rad-hard development times, chips manufactured in latest CMOS processes pose a variety of challenges, both from an experimental standpoint and for modeling perspectives. This work thus focuses on simulating single-event upsets and transients in advanced FD-SOI and bulk silicon processes.The soft-error response of 28 nm FD-SOI transistors is first investigated through TCAD simulations, allowing to develop two innovative models for radiation-induced currents in FD-SOI. One of them is mainly behavioral, while the other captures complex phenomena, such as parasitic bipolar amplification and circuit feedback effects, from first semiconductor principles and in agreement with detailed TCAD simulations.These compact models are then interfaced to a complete Monte Carlo Soft-Error Rate (SER) simulation platform, leading to extensive validation against experimental data collected on several test vehicles under accelerated particle beams. Finally, predictive simulation studies are presented on bit-cells, sequential and combinational logic gates in 28 nm FD-SOI and 65 nm bulk Si, providing insights into the mechanisms that contribute to the SER of modern integrated circuits in orbit
Uznanski, Slawosz. „Monte-Carlo simulation and contribution to understanding of Single-Event-Upset (SEU) mechanisms in CMOS technologies down to 20nm technological node“. Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10222/document.
Der volle Inhalt der QuelleAggressive integrated circuit density increase and power supply scaling have propelled Single Event Effects to the forefront of reliability concerns in ground-based and space-bound electronic systems. This study focuses on modeling of Single Event physical phenomena. To enable performing reliability assessment, a complete simulation platform named Tool suIte for rAdiation Reliability Assessment (TIARA) has been developed that allows performing sensitivity prediction of different digital circuits (SRAM, Flip-Flops, etc.) in different radiation environments and at different operating conditions (power supply voltage,altitude, etc.) TIARA has been extensively validated with experimental data for space and terrestrial radiation environments using different test vehicles manufactured by STMicroelectronics. Finally, the platform has been used during rad-hard digital circuits design and to provide insights into radiation-induced upset mechanisms down to CMOS 20nm technological node
Lecat-Mathieu, de Boissac Capucine. „Developing radiation-hardening solutions for high-performance and low-power systems“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0413.
Der volle Inhalt der QuelleNew actors have accelerated the pace of putting new satellites into orbit, and other domains like the automotive industry are at the origin of this development. These new actors rely on advanced technologies, such as UTBB FD-SOI in order to be able to achieve the necessary performance to accomplish the tasks. Albeit disruptive in terms of intrinsic soft-error resistance, the growing density and complexity of spaceborne and automotive systems require an accurate characterization of technologies, as well as an adaptation of traditional hardening techniques. This PhD focuses on the study of radiation effects in advanced FD-SOI and bulk silicon processes, and on the research of innovative protection mechanisms. A custom, self-calibrating transient measurements structure with automated design flow is first presented, allowing for the characterization of four different technologies during accelerated tests. The soft-error response of 28~nm FD-SOI and 40~nm bulk logic and storage cells is then assessed through beam testing and with the help of TCAD simulations, allowing to study the influence of voltage, frequency scaling and the application of forward body biasing on sensitivity. Total ionizing dose is also investigated through the use of an on-chip monitoring block. The test results are then utilized to propose a novel hardening solution for system on chip, which gathers the monitoring structures into a real-time radiation environment assessment and a power management unit for power mode adjustments. Finally, as an extension of the SET sensors capability, an implementation of radiation monitors in a context of secure systems is proposed to detect and counteract laser attacks