Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Air-launched rocket“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Air-launched rocket" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Air-launched rocket"
Eberhart, J. „Air-Launched Rocket Orbits Two Satellites“. Science News 137, Nr. 15 (14.04.1990): 229. http://dx.doi.org/10.2307/3974547.
Der volle Inhalt der QuelleZheng, Wu-ji, und Deng-cheng Zhang. „Dynamic model for internally carried air-launched rocket“. Journal of Central South University 25, Nr. 11 (28.11.2018): 2641–53. http://dx.doi.org/10.1007/s11771-018-3942-1.
Der volle Inhalt der QuelleParkinson, R. C., V. A. Skorodelov, I. I. Serdijk und V. Ya Neiland. „RADEM: An air launched, rocket demonstrator for future advanced launch systems“. Acta Astronautica 37 (Oktober 1995): 215–22. http://dx.doi.org/10.1016/0094-5765(95)00089-i.
Der volle Inhalt der QuelleZhang, Yan Hua, Hua Xing Li, Deng Cheng Zhang und Liang Qu. „The Effect of Nose Bluntness and Forebody Strakes on Aerodynamic Characteristics of Air-Launched Rocket Model“. Applied Mechanics and Materials 391 (September 2013): 143–49. http://dx.doi.org/10.4028/www.scientific.net/amm.391.143.
Der volle Inhalt der QuelleAnandhanarayanan, Karuppanasamy, Ankit Raj, Rajah Krishnamurthy und Debasis Chakraborty. „Engineering Method of Prediction of Plume Path of Air Launched Missile“. Defence Science Journal 70, Nr. 2 (09.03.2020): 201–6. http://dx.doi.org/10.14429/dsj.70.13853.
Der volle Inhalt der QuelleZhang, G. Q., S. C. M. Yu, A. Chien und Y. Xu. „Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle“. Advances in Mechanical Engineering 5 (Januar 2013): 735168. http://dx.doi.org/10.1155/2013/735168.
Der volle Inhalt der QuelleHuan-Ding, Zhou, Xie Wei-Qi und Cai Yuan-Wen. „The Analysis of Compound Control in the Pre-launch Attitude of Internally Carried Air-launched Rocket Based on Simulink“. IOP Conference Series: Materials Science and Engineering 449 (29.11.2018): 012007. http://dx.doi.org/10.1088/1757-899x/449/1/012007.
Der volle Inhalt der QuelleLübken, F. J., B. Strelnikov, M. Rapp, W. Singer, R. Latteck, A. Brattli, U. P. Hoppe und M. Friedrich. „The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes“. Atmospheric Chemistry and Physics 6, Nr. 1 (02.01.2006): 13–24. http://dx.doi.org/10.5194/acp-6-13-2006.
Der volle Inhalt der QuelleLübken, F. J., B. Strelnikov, M. Rapp, W. Singer, R. Latteck, A. Brattli, U. P. Hoppe und M. Friedrich. „The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes“. Atmospheric Chemistry and Physics Discussions 5, Nr. 4 (29.08.2005): 7613–45. http://dx.doi.org/10.5194/acpd-5-7613-2005.
Der volle Inhalt der QuelleBertaina, Mario, Toshikazu Ebisuzaki, Piero Galeotti und Fumiyoshi Kajino. „THE JEM-EUSO MISSION“. Acta Polytechnica 53, A (18.12.2013): 811–13. http://dx.doi.org/10.14311/ap.2013.53.0811.
Der volle Inhalt der QuelleDissertationen zum Thema "Air-launched rocket"
Sigvant, John. „Conceptual Design of an Air- launched Multi-stage Launch Vehicle“. Thesis, KTH, Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284355.
Der volle Inhalt der QuelleI den här avhandlingen var syftet att hitta den maximala mängden nyttolastmassa som kan transporteras av en 1400 kg flerstegsraket uppskjuten från luften till en 500 km polär bana. För att uppfylla målet utvecklades en algoritm med flera moduler. Modulerna utförde beräkningar baserade på teoretiska modeller och litteraturvärden för att komma fram till optimala designvariabler. Från konstruktionen kunde den maximala nyttolastmassan härledas och det konstaterades att en trestegsraket kunde leverera en nyttolast på 22.0 kg till den önskade omloppsbanan.
Rasmussen, Måns. „Conceptual Design of an Air-Launched Three-Staged Orbital Launch Vehicle“. Thesis, KTH, Rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302775.
Der volle Inhalt der QuelleMålet med den här studien var att designa en luftlanserad trestegsraket kapabel till att transportera en nanosatellit upp till en solsynkron omloppsbana på 500 km altitud från ett JAS 39E/F Gripen jaktflygplan. Det gjordes genom att först beräkna de nödvändiga dysorna och krutladdningsformerna för de två första stegen tillsammans med en flytande bränsledesign för det tredje steget. Två metoder undersöktes för bananalysen. Först genom att anta en Sigmoidal styrningsfunktion för pitchen, sedan genom att transkribera problemet till ett icke-linjärt program där en parametrisk styrlag togs fram genom att använda en Sequential quadratic programming algoritm. Slutligen presenterades en raketdesign med en total vikt på 1 289 kg, kapabel till att skjuta upp en nyttolast på 8,4 kg till den önskade omloppsbanan tillsammans med förslag som kan öka den möjliga nyttolasten till 12,9 kg.
Musil, Tomáš. „Létající atmosférický nosič pro vypouštění raket“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443187.
Der volle Inhalt der QuelleBeerer, Ingrid Mary. „Modeling dispersions in initial conditions for air-launched rockets and their effect on vehicle performance“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/86865.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 157-159).
Growing interest in air-launched rockets as a method for lofting satellites into orbit motivates the need to investigate the unique challenges that air launch presents. This thesis explores how uncertainties in an air-launched rocket's state at ignition can affect system performance and investigates a reference trajectory strategy to mitigate performance loss. First, representative vehicle configurations for a generic air-launch system are presented. Mass properties, propulsion characteristics, and vehicle aerodynamics are estimated for the generic rocket configuration. A six-degree-of-freedom (6-DOF) simulation models the vehicle's behavior during the uncontrolled drop phase prior to rocket ignition. The results of 1000 Monte Carlo runs with various initial conditions produce a statistical representation of the expected dispersions in vehicle state at ignition. A 6-DOF Simulink simulation of the rocket's first stage bum is used to quantify the vehicle's performance. The simulation is run for a variety of ignition states, reference trajectories, and constraints on the rocket's control system. The results indicate that for a highly responsive thrust vector control (TVC) system, the rocket experiences negligible performance losses due to dispersions in ignition conditions. However, for a rocket with a less responsive TVC system, dispersions will result in significant performance loss by the end of first stage burn. Finally, the thesis illustrates how selection of a reference trajectory that is optimized for a given dispersed ignition state can significantly reduce the system's performance loss due to dispersions..
by Ingrid Mary Beerer.
S.M.
Konferenzberichte zum Thema "Air-launched rocket"
Roychowdhury, Anjali, Thomas White, Andrew Lesh, Tim Vrakas, Michael Arcidiacono, Jackson Miller, Rayan Sud et al. „Air-Launched. Low-SWaP, Space-Capable Sounding Rocket“. In 2019 IEEE Aerospace Conference. IEEE, 2019. http://dx.doi.org/10.1109/aero.2019.8741861.
Der volle Inhalt der QuelleHaglind, Fredrik, Henrik Edefur und Stefan Olsson. „Design of a Solid Propellant Air Turbo Rocket for a Tactical Air-Launched Missile“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27826.
Der volle Inhalt der QuelleNoh, Kyung-Ho, Young Moo Ji, Mee-Young Park, Jae-Woo Lee, Yung-Hwan Byun und Young Chang Choi. „Integrated Analysis of Air-launched Rocket Using Fluid-Structure Interaction“. In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-728.
Der volle Inhalt der QuelleXu, Zhi, und Shuo Tang. „Air-launched rocket attitude control of separation stage based on RCS“. In 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icacte.2010.5579561.
Der volle Inhalt der QuelleHendrick, P., und M. Saint-Mard. „Subsonic in-flight LOX collection for an all-rocket air-launched orbiter“. In 35th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-2351.
Der volle Inhalt der QuelleKarabeyoglu, Arif, Todd Falconer, Brian Cantwell und Jose Stevens. „Design of an Orbital Hybrid Rocket Vehicle Launched from Canberra Air Platform“. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4096.
Der volle Inhalt der QuelleLogan, William, Roger Davis, Nesrin Sarigul-Klijn und Marti Sarigul-Klijn. „Engine Thrust Effects on Air-Launched Rocket Aerodynamic Characteristics at High Angle of Attack“. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4963.
Der volle Inhalt der QuelleEdefur, Henrik, Fredrik Haglind und Stefan Olsson. „Design of an Air-Launched Tactical Missile for Three Different Propulsion Systems: ATR, Rocket and Turbojet“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27844.
Der volle Inhalt der QuelleGeisler, Robert, Thomas Moore, Eric Rohrbaugh und Carl Pignoli. „Unlocking the Mystery of the D-21B Solid Rocket Boosted Air-Launched Mach-3 UAV“. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5761.
Der volle Inhalt der QuelleIshkov, Sergey, Victor Balakin, Andrew Khramov und Nikolay Elisov. „Optimizing an Ascent Trajectory of a Small Spacecraft Launched by an Air-based Two-Stage Rocket“. In 2019 9th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2019. http://dx.doi.org/10.1109/rast.2019.8767875.
Der volle Inhalt der Quelle