Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „AI security“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "AI security" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "AI security"
Chen, Hsinchun. „AI and Security Informatics“. IEEE Intelligent Systems 25, Nr. 5 (September 2010): 82–90. http://dx.doi.org/10.1109/mis.2010.116.
Der volle Inhalt der QuelleAgrawal, Jatin, Samarjeet Singh Kalra und Himanshu Gidwani. „AI in cyber security“. International Journal of Communication and Information Technology 4, Nr. 1 (01.01.2023): 46–53. http://dx.doi.org/10.33545/2707661x.2023.v4.i1a.59.
Der volle Inhalt der QuelleBS, Guru Prasad, Dr Kiran GM und Dr Dinesha HA. „AI-Driven cyber security: Security intelligence modelling“. International Journal of Multidisciplinary Research and Growth Evaluation 4, Nr. 6 (2023): 961–65. http://dx.doi.org/10.54660/.ijmrge.2023.4.6.961-965.
Der volle Inhalt der QuelleAbudalou, Mohammad Ali. „Security DevOps: Enhancing Application Delivery with Speed and Security“. International Journal of Computer Science and Mobile Computing 13, Nr. 5 (30.05.2024): 100–104. http://dx.doi.org/10.47760/ijcsmc.2024.v13i05.009.
Der volle Inhalt der QuelleReddy, Haritha Madhava. „Role of AI in Security Compliance“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 11 (23.11.2024): 1–6. http://dx.doi.org/10.55041/ijsrem32650.
Der volle Inhalt der QuelleGudimetla, Sandeep Reddy, und Niranjan Reddy Kotha. „AI-POWERED THREAT DETECTION IN CLOUD ENVIRONMENTS“. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9, Nr. 1 (08.04.2018): 638–42. http://dx.doi.org/10.61841/turcomat.v9i1.14730.
Der volle Inhalt der QuellePoonia, Ramesh Chandra. „Securing the Sustainable Future : Cryptography and Security in AI & IoT“. Journal of Discrete Mathematical Sciences and Cryptography 27, Nr. 4 (2024): i—vii. http://dx.doi.org/10.47974/jdmsc-27-4-foreword.
Der volle Inhalt der QuelleSengupta, Abhijeet. „Securing the Autonomous Future A Comprehensive Analysis of Security Challenges and Mitigation Strategies for AI Agents“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 12 (24.12.2024): 1–2. https://doi.org/10.55041/ijsrem40091.
Der volle Inhalt der QuelleSamijonov, Nurmukhammad Y. „AI FOR INFORMATION SECURITY AND CYBERSPACE“. American Journal of Applied Science and Technology 3, Nr. 10 (01.10.2023): 39–43. http://dx.doi.org/10.37547/ajast/volume03issue10-08.
Der volle Inhalt der QuelleSamijonov, Nurmukhammad Y. „EMERGING SECURITY CONCERNS BECAUSE OF AI USAGE“. Journal of Social Sciences and Humanities Research Fundamentals 3, Nr. 11 (01.11.2023): 43–46. http://dx.doi.org/10.55640/jsshrf-03-11-10.
Der volle Inhalt der QuelleDissertationen zum Thema "AI security"
Djaidja, Taki Eddine Toufik. „Advancing the Security of 5G and Beyond Vehicular Networks through AI/DL“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK009.
Der volle Inhalt der QuelleThe emergence of Fifth Generation (5G) and Vehicle-to-Everything (V2X) networks has ushered in an era of unparalleled connectivity and associated services. These networks facilitate seamless interactions among vehicles, infrastructure, and more, providing a range of services through network slices, each tailored to specific requirements. Future generations are even expected to bring further advancements to these networks. However, this remarkable progress also exposes them to a myriad of security threats, many of which current measures struggle to detect and mitigate effectively. This underscores the need for advanced intrusion detection mechanisms to ensure the integrity, confidentiality, and availability of data and services.One area of increasing interest in both academia and industry spheres is Artificial Intelligence (AI), particularly its application in addressing cybersecurity threats. Notably, neural networks (NNs) have demonstrated promise in this context, although AI-based solutions do come with inherent challenges. These challenges can be summarized as concerns about effectiveness and efficiency. The former pertains to the need for Intrusion Detection Systems (IDSs) to accurately detect threats, while the latter involves achieving time efficiency and early threat detection.This dissertation represents the culmination of our research findings on investigating the aforementioned challenges of AI-based IDSs in 5G systems in general and 5G-V2X in particular. We initiated our investigation by conducting a comprehensive review of the existing literature. Throughout this thesis, we explore the utilization of Fuzzy Inference Systems (FISs) and NNs, with a specific emphasis on the latter. We leveraged state-of-the-art NN learning, referred to as Deep Learning (DL), including the incorporation of recurrent neural networks and attention mechanisms. These techniques are innovatively harnessed to making significant progress in addressing the concerns of enhancing the effectiveness and efficiency of IDSs. Moreover, our research delves into additional challenges related to data privacy when employing DL-based IDSs. We achieve this by leveraging and experimenting state-of-the-art federated learning (FL) algorithms
Hatoum, Makram. „Digital watermarking for PDF documents and images : security, robustness and AI-based attack“. Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD016.
Der volle Inhalt der QuelleTechnological development has its pros and cons. Nowadays, we can easily share, download, and upload digital content using the Internet. Also, malicious users can illegally change, duplicate, and distribute any kind of information, such as images and documents. Therefore, we should protect such contents and arrest the perpetrator. The goal of this thesis is to protect PDF documents and images using the Spread Transform Dither Modulation (STDM), as a digital watermarking technique, while taking into consideration the main requirements of transparency, robustness, and security. STDM watermarking scheme achieved a good level of transparency and robustness against noise attacks. The key to this scheme is the projection vector that aims to spreads the embedded message over a set of cover elements. However, such a key vector can be estimated by unauthorized users using the Blind Source Separation (BSS) techniques. In our first contribution, we present our proposed CAR-STDM (Component Analysis Resistant-STDM) watermarking scheme, which guarantees security while preserving the transparency and robustness against noise attacks. STDM is also affected by the Fixed Gain Attack (FGA). In the second contribution, we present our proposed N-STDM watermarking scheme that resists the FGA attack and enhances the robustness against the Additive White Gaussian Noise (AWGN) attack, JPEG compression attack, and variety of filtering and geometric attacks. Experimentations have been conducted distinctly on PDF documents and images in the spatial domain and frequency domain. Recently, Deep Learning and Neural Networks achieved noticeable development and improvement, especially in image processing, segmentation, and classification. Diverse models such as Convolutional Neural Network (CNN) are exploited for modeling image priors for denoising. CNN has a suitable denoising performance, and it could be harmful to watermarked images. In the third contribution, we present the effect of a Fully Convolutional Neural Network (FCNN), as a denoising attack, on watermarked images. STDM and Spread Spectrum (SS) are used as watermarking schemes to embed the watermarks in the images using several scenarios. This evaluation shows that such type of denoising attack preserves the image quality while breaking the robustness of all evaluated watermarked schemes
Radosavljevic, Bojan, und Axel Kimblad. „Etik och säkerhet när AI möter IoT“. Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20613.
Der volle Inhalt der QuelleIn today's society, technological developments are moving fast. Artificial intelligence and the Internet of Things are two technologies within the development whose popularity has increased in recent years. These technologies in integration have proven to be able to contribute with major business benefits, including in the form of increased precision with regard to analyzes, better customer value and efficiency of downtime. New technology also presents challenges. As the technologies are constantly growing, issues arise regarding safety and ethics and how this should be managed. The aim of this study is to find out how experts value ethical issues when using artificial intelligence in combination with the Internet of Things devices. We focused on the following research question to reach our goal: How are ethical issues evaluated when using artificial intelligence in combination with the Internet of Things? The result we found shows that both researchers and the business world value the ethical aspects highly. The study also shows that they considered the techniques to be the solution to many societal problems, but that ethics should be a topic that should be discussed on an ongoing basis.
KRAYANI, ALI. „Learning Self-Awareness Models for Physical Layer Security in Cognitive and AI-enabled Radios“. Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1074612.
Der volle Inhalt der QuelleRanang, Martin Thorsen. „An Artificial Immune System Approach to Preserving Security in Computer Networks“. Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-255.
Der volle Inhalt der QuelleIt is believed that many of the mechanisms present in the biological immune system are well suited for adoption to the field of computer intrusion detection, in the form of artificial immune systems. In this report mechanisms in the biological immune system are introduced, their parallels in artificial immune systems are presented, and how they may be applied to intrusion detection in a computer environment is discussed. An artificial immune system is designed, implemented and applied to detect intrusive behavior in real network data in a simulated network environment. The effect of costimulation and clonal proliferation combined with somatic hypermutation to perform affinity maturation of detectors in the artificial immune system is explored through experiments. An exact expression for the probability of a match between two randomly chosen strings using the r-contiguous matching rule is developed. The use of affinity maturation makes it possible to perform anomaly detection by using smaller sets of detectors with a high level of specificity while maintaining a high level of cover and diversity, which increases the number of true positives, while keeping a low level of false negatives.
TOMA, ANDREA. „PHY-layer Security in Cognitive Radio Networks through Learning Deep Generative Models: an AI-based approach“. Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1003576.
Der volle Inhalt der QuelleMusgrave, John. „Cognitive Malice Representation and Identification“. University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1565348664149804.
Der volle Inhalt der QuelleZhang, Yueqian. „Resource Clogging Attacks in Mobile Crowd-Sensing: AI-based Modeling, Detection and Mitigation“. Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40082.
Der volle Inhalt der QuelleSYED, MUHAMMAD FARRUKH SHAHID. „Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT“. Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1048543.
Der volle Inhalt der QuelleSIGNORI, ROBERTA. „POLIZIA PENITENZIARIA E SORVEGLIANZA DINAMICA IN CARCERE Le risposte ai cambiamenti organizzativi e l’impatto sul benessere del personale“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/158284.
Der volle Inhalt der QuelleThe Italian prison system is affected by deep organisational changes which affect the work of prison officers. The implementation of the so called “dynamic security” within detention wings is likely to redefine the interaction patterns between the staff and offenders. The “dynamic security” is regarded as an innovative surveillance procedure which relies on the observation and the knowledge of the offenders, rather than on their physical control. According to policy makers, the “dynamic security” is not just an innovative way of ensuring security, but it should also represent a “new way of being” of prison officers (de Pascalis 2013). The implementation of this organisational change raises questions regarding its influence on the daily life of offenders and prison guards and their interaction within a changing environment. This research focuses on the influence of the implementation of the “dynamic security” on prison officers role identity. It aims to shed light on the identity related dimension of the prison work within a context that I defined as “liminal” by virtue of the coexistence of two antithetical institutional objectives, that is to say, rehabilitation and reclusion. Indeed, responses to organizational changes cannot be understood and interpreted without taking into consideration the dynamics and processes of identification in the role of prison officer. This research will highlight the conditions which can facilitate the transition to new work practices and foster prison officer wellbeing, through the analysis of the processes of identification within the changing environment of prison.
Bücher zum Thema "AI security"
Huang, Ken, Yang Wang, Ben Goertzel, Yale Li, Sean Wright und Jyoti Ponnapalli, Hrsg. Generative AI Security. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7.
Der volle Inhalt der QuelleThakkar, Hiren Kumar, Mayank Swarnkar und Robin Singh Bhadoria, Hrsg. Predictive Data Security using AI. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6290-5.
Der volle Inhalt der QuelleWhitlock, Chris, und Frank Strickland. Winning the National Security AI Competition. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-8814-6.
Der volle Inhalt der QuelleSehgal, Naresh Kumar, Manoj Saxena und Dhaval N. Shah. AI on the Edge with Security. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-78272-5.
Der volle Inhalt der QuelleJaswal, Gaurav, Vivek Kanhangad und Raghavendra Ramachandra, Hrsg. AI and Deep Learning in Biometric Security. First edition. | Boca Raton, FL : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003003489.
Der volle Inhalt der QuelleHewage, Chaminda, Liqaa Nawaf und Nishtha Kesswani, Hrsg. AI Applications in Cyber Security and Communication Networks. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3973-8.
Der volle Inhalt der QuelleFilì, Valeria. Il reddito imponibile ai fini contributivi. Torino: G. Giappichelli, 2010.
Den vollen Inhalt der Quelle findenKulkarni, Anand J., Patrick Siarry, Apoorva S. Shastri und Mangal Singh. AI-Based Metaheuristics for Information Security and Digital Media. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003107767.
Der volle Inhalt der QuelleKarimipour, Hadis, und Farnaz Derakhshan, Hrsg. AI-Enabled Threat Detection and Security Analysis for Industrial IoT. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76613-9.
Der volle Inhalt der QuelleRaj, Balwinder, Brij B. Gupta, Shingo Yamaguchi und Sandeep Singh Gill. AI for Big Data-Based Engineering Applications from Security Perspectives. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003230113.
Der volle Inhalt der QuelleBuchteile zum Thema "AI security"
Cagle, Anton, und Ahmed Ceifelnasr Ahmed. „Security“. In Architecting Enterprise AI Applications, 193–212. Berkeley, CA: Apress, 2024. https://doi.org/10.1007/979-8-8688-0902-6_10.
Der volle Inhalt der QuelleHuang, Ken, Aditi Joshi, Sandy Dun und Nick Hamilton. „AI Regulations“. In Generative AI Security, 61–98. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_3.
Der volle Inhalt der QuelleHuang, Ken, Ben Goertzel, Daniel Wu und Anita Xie. „GenAI Model Security“. In Generative AI Security, 163–98. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_6.
Der volle Inhalt der QuelleHuang, Ken, Jerry Huang und Daniele Catteddu. „GenAI Data Security“. In Generative AI Security, 133–62. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_5.
Der volle Inhalt der QuelleHuang, Ken, Grace Huang, Adam Dawson und Daniel Wu. „GenAI Application Level Security“. In Generative AI Security, 199–237. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_7.
Der volle Inhalt der QuelleHuang, Ken, Fan Zhang, Yale Li, Sean Wright, Vasan Kidambi und Vishwas Manral. „Security and Privacy Concerns in ChatGPT“. In Beyond AI, 297–328. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45282-6_11.
Der volle Inhalt der QuelleFrenkel, Edward. „AI Safety“. In Artificial Intelligence Safety and Security, 199–205. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781351251389-13.
Der volle Inhalt der QuelleHuang, Ken, Yang Wang und Xiaochen Zhang. „Foundations of Generative AI“. In Generative AI Security, 3–30. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_1.
Der volle Inhalt der QuelleHuang, Ken, Grace Huang, Yuyan Duan und Ju Hyun. „Utilizing Prompt Engineering to Operationalize Cybersecurity“. In Generative AI Security, 271–303. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_9.
Der volle Inhalt der QuelleHuang, Ken, John Yeoh, Sean Wright und Henry Wang. „Build Your Security Program for GenAI“. In Generative AI Security, 99–132. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "AI security"
Ünal, Hasan Tolga, Arif Furkan Mendi, Özgür Umut Vurgun, Ömer Özkan und Mehmet Akif Nacar. „AI – Supported Collective Security System“. In 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/idap64064.2024.10711160.
Der volle Inhalt der Quellevan Oers, Alexander M., und Jorik T. Venema. „Anti-AI camouflage“. In Artificial Intelligence for Security and Defence Applications II, herausgegeben von Henri Bouma, Yitzhak Yitzhaky, Radhakrishna Prabhu und Hugo J. Kuijf, 32. SPIE, 2024. http://dx.doi.org/10.1117/12.3031144.
Der volle Inhalt der QuelleDiyora, Vishal, und Nilesh Savani. „Blockchain or AI: Web Applications Security Mitigations“. In 2024 First International Conference on Pioneering Developments in Computer Science & Digital Technologies (IC2SDT), 418–23. IEEE, 2024. http://dx.doi.org/10.1109/ic2sdt62152.2024.10696861.
Der volle Inhalt der QuelleAmbati, Sri Haritha, Norah Ridley, Enrico Branca und Natalia Stakhanova. „Navigating (in)Security of AI-Generated Code“. In 2024 IEEE International Conference on Cyber Security and Resilience (CSR), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/csr61664.2024.10679468.
Der volle Inhalt der QuelleBertino, Elisa, Murat Kantarcioglu, Cuneyt Gurcan Akcora, Sagar Samtani, Sudip Mittal und Maanak Gupta. „AI for Security and Security for AI“. In CODASPY '21: Eleventh ACM Conference on Data and Application Security and Privacy. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3422337.3450357.
Der volle Inhalt der QuelleSong, Dawn. „AI and Security“. In ASIA CCS '20: The 15th ACM Asia Conference on Computer and Communications Security. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3320269.3384771.
Der volle Inhalt der QuelleSasaki, Ryoichi. „AI and Security - What Changes with Generative AI“. In 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). IEEE, 2023. http://dx.doi.org/10.1109/qrs-c60940.2023.00043.
Der volle Inhalt der QuelleWashizaki, Hironori, und Nobukazu Yoshioka. „AI Security Continuum: Concept and Challenges“. In CAIN 2024: IEEE/ACM 3rd International Conference on AI Engineering - Software Engineering for AI. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3644815.3644983.
Der volle Inhalt der QuelleJacobs, Arthur S., Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira, Arpit Gupta und Lisandro Z. Granville. „AI/ML for Network Security“. In CCS '22: 2022 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3548606.3560609.
Der volle Inhalt der QuelleDeldari, Shohreh, Mohammad Goudarzi, Aditya Joshi, Arash Shaghaghi, Simon Finn, Flora D. Salim und Sanjay Jha. „AuditNet: Conversational AI Security Assistant“. In MobileHCI '24: 26th International Conference on Mobile Human-Computer Interaction, 1–4. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3640471.3680444.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "AI security"
Lewis, Daniel, und Josh Oxby. Energy security and AI. Parliamentary Office of Science and Technology, Dezember 2024. https://doi.org/10.58248/pn735.
Der volle Inhalt der QuelleChristie, Lorna. AI in policing and security. Parliamentary Office of Science and Technology, April 2021. http://dx.doi.org/10.58248/hs27.
Der volle Inhalt der QuelleGehlhaus, Diana. Staying Ahead: Strengthening Tomorrow's U.S. AI and AI-Enabled Workforce. Center for Security and Emerging Technology, November 2021. http://dx.doi.org/10.51593/20210075.
Der volle Inhalt der QuelleBennet, Karen, Gopi Krishnan Rajbahadur, Arthit Suriyawongkul und Kate Stewart. Implementing AI Bill of Materials (AI BOM) with SPDX 3.0: A Comprehensive Guide to Creating AI and Dataset Bill of Materials. The Linux Foundation, Oktober 2024. https://doi.org/10.70828/rned4427.
Der volle Inhalt der QuelleKim, Kyungmee, und Boulanin Vincent. Artificial Intelligence for Climate Security: Possibilities and Challenges. Stockholm International Peace Research Institute, Dezember 2023. http://dx.doi.org/10.55163/qdse8934.
Der volle Inhalt der QuelleMurdick, Dewey, Daniel Chou, Ryan Fedasiuk und Emily Weinstein. The Public AI Research Portfolio of China’s Security Forces. Center for Security and Emerging Technology, März 2021. http://dx.doi.org/10.51593/20200057.
Der volle Inhalt der QuelleMurdick, Dewey, James Dunham und Jennifer Melot. AI Definitions Affect Policymaking. Center for Security and Emerging Technology, Juni 2020. http://dx.doi.org/10.51593/20200004.
Der volle Inhalt der QuelleHoffman, Wyatt. "Making AI Work for Cyber Defense: The Accuracy-Robustness Tradeoff ". Center for Security and Emerging Technology, Dezember 2021. http://dx.doi.org/10.51593/2021ca007.
Der volle Inhalt der QuelleWeinstein, Emily, und Ngor Luong. U.S. Outbound Investment into Chinese AI Companies. Center for Security and Emerging Technology, Februar 2023. http://dx.doi.org/10.51593/20210067.
Der volle Inhalt der QuelleMutis, Santiago. Privately Held AI Companies by Sector. Center for Security and Emerging Technology, Oktober 2020. http://dx.doi.org/10.51593/20200019.
Der volle Inhalt der Quelle