Zeitschriftenartikel zum Thema „Aggregation induced/enhanced emission“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Aggregation induced/enhanced emission.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Aggregation induced/enhanced emission" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chandrasekharan, Swathi Vanaja, Nithiyanandan Krishnan, Siriki Atchimnaidu, Gowtham Raj, Anusree Krishna P. K., Soumya Sagar, Suresh Das und Reji Varghese. „Blue-emissive two-component supergelator with aggregation-induced enhanced emission“. RSC Advances 11, Nr. 32 (2021): 19856–63. http://dx.doi.org/10.1039/d1ra03751j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wu, Bingzhao, Zhewen Guo, Guangfeng Li, Jun Zhao, Yuhang Liu, Jinbing Wang, Huigang Wang und Xuzhou Yan. „Synergistic combination of ACQ and AIE moieties to enhance the emission of hexagonal metallacycles“. Chemical Communications 57, Nr. 84 (2021): 11056–59. http://dx.doi.org/10.1039/d1cc03787k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sheng, Xiaohai, und Yan Qian. „Photoswitchable Composite Organic Nanoparticles with Aggregation-Induced Enhanced Emission“. Journal of Nanoscience and Nanotechnology 10, Nr. 12 (01.12.2010): 8307–11. http://dx.doi.org/10.1166/jnn.2010.2993.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Malakar, Ashim, Manishekhar Kumar, Anki Reddy, Himadree T. Biswal, Biman B. Mandal und G. Krishnamoorthy. „Aggregation induced enhanced emission of 2-(2′-hydroxyphenyl)benzimidazole“. Photochemical & Photobiological Sciences 15, Nr. 7 (2016): 937–48. http://dx.doi.org/10.1039/c6pp00122j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Iasilli, Giuseppe, Marco Scatto und Andrea Pucci. „Vapochromic polyketone films based on aggregation‐induced enhanced emission“. Polymers for Advanced Technologies 30, Nr. 5 (Mai 2018): 1160–64. http://dx.doi.org/10.1002/pat.4317.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Xu, Defang, Ying Wang, Li Li, Hongke Zhou und Xingliang Liu. „Aggregation-induced enhanced emission-type cruciform luminophore constructed by carbazole exhibiting mechanical force-induced luminescent enhancement and chromism“. RSC Advances 10, Nr. 20 (2020): 12025–34. http://dx.doi.org/10.1039/d0ra00283f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhou, Jiahe, Fen Qi, Yuncong Chen, Shuren Zhang, Xiaoxue Zheng, Weijiang He und Zijian Guo. „Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting“. Biosensors 12, Nr. 11 (16.11.2022): 1027. http://dx.doi.org/10.3390/bios12111027.

Der volle Inhalt der Quelle
Annotation:
Photodynamic therapy (PDT) has attracted much attention in the field of anticancer treatment. However, PDT has to face challenges, such as aggregation caused by quenching of reactive oxygen species (ROS), and short 1O2 lifetime, which lead to unsatisfactory therapeutic effect. Aggregation-induced emission luminogen (AIEgens)-based photosensitizers (PSs) showed enhanced ROS generation upon aggregation, which showed great potential for hypoxic tumor treatment with enhanced PDT effect. In this review, we summarized the design strategies and applications of AIEgen-based PSs with improved PDT efficacy since 2019. Firstly, we introduce the research background and some basic knowledge in the related field. Secondly, the recent approaches of AIEgen-based PSs for enhanced PDT are summarized in two categories: (1) organelle-targeting PSs that could cause direct damage to organelles to enhance PDT effects, and (2) PSs with tumor-targeting abilities to selectively suppress tumor growth and reduce side effects. Finally, current challenges and future opportunities are discussed. We hope this review can offer new insights and inspirations for the development of AIEgen-based PSs for better PDT effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tang, Baolei, Huapeng Liu, Feng Li, Yue Wang und Hongyu Zhang. „Single-benzene solid emitters with lasing properties based on aggregation-induced emissions“. Chemical Communications 52, Nr. 39 (2016): 6577–80. http://dx.doi.org/10.1039/c6cc02616h.

Der volle Inhalt der Quelle
Annotation:
Highly efficient single-benzene solid emitters exhibiting aggregation-induced emission (AIE), crystallization-enhanced emission (CEE), as well as amplified spontaneous emission (ASE) have been obtained based on structurally simple ESIPT-active organic molecules.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sun, Guang-Xu, Ming-Gang Ju, Hang Zang, Yi Zhao und WanZhen Liang. „Mechanisms of large Stokes shift and aggregation-enhanced emission of osmapentalyne cations in solution: combined MD simulations and QM/MM calculations“. Physical Chemistry Chemical Physics 17, Nr. 37 (2015): 24438–45. http://dx.doi.org/10.1039/c5cp03800f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Khan, Faizal, Anupama Ekbote und Rajneesh Misra. „Reversible mechanochromism and aggregation induced enhanced emission in phenothiazine substituted tetraphenylethylene“. New Journal of Chemistry 43, Nr. 41 (2019): 16156–63. http://dx.doi.org/10.1039/c9nj03290h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ravindran, Ezhakudiyan, Soundaram Jeevarathinam Ananthakrishnan, Elumalai Varathan, Venkatesan Subramanian und Narayanasastri Somanathan. „White light emitting single polymer from aggregation enhanced emission: a strategy through supramolecular assembly“. Journal of Materials Chemistry C 3, Nr. 17 (2015): 4359–71. http://dx.doi.org/10.1039/c5tc00289c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Li, Guojuan, Chunying Fan, Guo Cheng, Wanhua Wu und Cheng Yang. „Synthesis, enantioseparation and photophysical properties of planar-chiral pillar[5]arene derivatives bearing fluorophore fragments“. Beilstein Journal of Organic Chemistry 15 (18.07.2019): 1601–11. http://dx.doi.org/10.3762/bjoc.15.164.

Der volle Inhalt der Quelle
Annotation:
Planar chiral pillar[5]arene derivatives (P5A-DPA and P5A-Py) bearing bulky fluorophores were obtained in high yield by click reaction. The photophysical properties of both compounds were investigated in detail. P5A-DPA with two 9,10-diphenylanthracene (DPA) pigments grafted on the pillar[5]arene showed a high fluorescence quantum yield of 89.5%. This is comparable to the monomer DPA-6, while P5A-Py with two perylene (Py) pigments grafted on the pillar[5]arene showed a significantly reduced quantum yield of 46.4% vs 78.2% for the monomer Py-6. The oxygen-through-annulus rotation of the phenolic units was inhibited for both compounds due to the bulky chromophore introduced, and the resolution of the enantiomers was achieved due to the bulky size of the fluorophores. The absolute configuration of the enantiomers was determined by circular dichroism (CD) spectra. The solvent-induced aggregation behavior was investigated with the enantiopure P5A-DPA and P5A-Py. It was found that the CD signals were enhanced by aggregation. P5A-DPA showed aggregation-induced emission enhancement, while P5A-Py showed aggregation-induced emission quenching, accompanied by excimer emission when aggregating in water and THF mixed solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Miao, Xinrui, Zhengkai Cai, Jinxing Li, Liqian Liu, Juntian Wu, Bang Li, Lei Ying, Fabien Silly, Wenli Deng und Yong Cao. „Elucidating Halogen‐Assisted Self‐Assembly Enhanced Mechanochromic Aggregation‐Induced Emission“. ChemPhotoChem 5, Nr. 7 (28.04.2021): 626–31. http://dx.doi.org/10.1002/cptc.202100041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kumari, Beena, Surya Pratap Singh, Ranga Santosh, Arnab Dutta, Sairam S. Mallajosyula, Subhas Ghosal und Sriram Kanvah. „Branching effect on triphenylamine-CF3 cyanostilbenes: enhanced emission and aggregation in water“. New Journal of Chemistry 43, Nr. 10 (2019): 4106–15. http://dx.doi.org/10.1039/c8nj05907a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ota, Wataru, Ken Takahashi, Kenji Higashiguchi, Kenji Matsuda und Tohru Sato. „Origin of aggregation-induced enhanced emission: role of pseudo-degenerate electronic states of excimers formed in aggregation phases“. Journal of Materials Chemistry C 8, Nr. 24 (2020): 8036–46. http://dx.doi.org/10.1039/c9tc07067b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Liang, Zuo-Qin, Xiao-Mei Wang, Guo-Liang Dai, Chang-Qing Ye, Yu-Yang Zhou und Xu-Tang Tao. „The solvatochromism and aggregation-induced enhanced emission based on triphenylamine-propenone“. New Journal of Chemistry 39, Nr. 11 (2015): 8874–80. http://dx.doi.org/10.1039/c5nj01072a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Wang, Lianke, Zheng Zheng, Zhipeng Yu, Jun Zheng, Min Fang, Jieying Wu, Yupeng Tian und Hongping Zhou. „Schiff base particles with aggregation-induced enhanced emission: random aggregation preventing π–π stacking“. Journal of Materials Chemistry C 1, Nr. 42 (2013): 6952. http://dx.doi.org/10.1039/c3tc31626b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Jiang, Hong-Xin, Meng-Yao Zhao, Chen-Di Niu und De-Ming Kong. „Real-time monitoring of rolling circle amplification using aggregation-induced emission: applications in biological detection“. Chemical Communications 51, Nr. 92 (2015): 16518–21. http://dx.doi.org/10.1039/c5cc07340e.

Der volle Inhalt der Quelle
Annotation:
Real-time monitoring of rolling circle amplification (RCA) was achieved by the super-aggregation of a tetraphenylethene dye QAPTE along single-stranded DNA products and consequent enhanced aggregation-induced emission, it can work for all RCA reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bin Chen, Bin Chen, Han Zhang, Wenwen Luo, Han Nie, Rongrong Hu, Anjun Qin, Zujin Zhao und Ben Zhong Tang. „Oxidation-enhanced emission: exploring novel AIEgens from thieno[3,2-b]thiophene S,S-dioxide“. Journal of Materials Chemistry C 5, Nr. 4 (2017): 960–68. http://dx.doi.org/10.1039/c6tc05116b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Lu, Pei-Long, Kun Li, Lei Shi, Xin Liu, Mei-Lin Feng, Hui-Zi He, Hui Yang und Xiao-Qi Yu. „Donor and acceptor engineering for BINOL based AIEgens with enhanced fluorescence performance“. Materials Advances 1, Nr. 1 (2020): 61–70. http://dx.doi.org/10.1039/d0ma00022a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Xie, Nuo-Hua, Chong Li, Jun-Xia Liu, Wen-Liang Gong, Ben Zhong Tang, Guigen Li und Ming-Qiang Zhu. „The synthesis and aggregation-induced near-infrared emission of terrylenediimide–tetraphenylethene dyads“. Chemical Communications 52, Nr. 34 (2016): 5808–11. http://dx.doi.org/10.1039/c6cc01187j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Yu, Wei, Ying Wu, Jiachun Chen, Xiangyan Duan, Xiao-Fang Jiang, Xueqing Qiu und Yuan Li. „Sulfonated ethylenediamine–acetone–formaldehyde condensate: preparation, unconventional photoluminescence and aggregation enhanced emission“. RSC Advances 6, Nr. 56 (2016): 51257–63. http://dx.doi.org/10.1039/c6ra06227j.

Der volle Inhalt der Quelle
Annotation:
The water-soluble sulfonated ethylenediamine–acetone–formaldehyde (SEAF) with unconventional fluorescence and AEE effect was prepared. The emission mechanism was ascribed to the cluster-induced emission of carbonyl groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yao, Maomao, Jinkun Huang, Zihao Deng, Wenying Jin, Yali Yuan, Jinfang Nie, Hua Wang, Fuyou Du und Yun Zhang. „Transforming glucose into fluorescent graphene quantum dots via microwave radiation for sensitive detection of Al3+ ions based on aggregation-induced enhanced emission“. Analyst 145, Nr. 21 (2020): 6981–86. http://dx.doi.org/10.1039/d0an01639j.

Der volle Inhalt der Quelle
Annotation:
This work initially describes the microwave-assisted synthesis of graphene quantum dots (GQDs) for fluorescence detection of Al3+ ions based on the analyte-mediated aggregation of GQDs leading to aggregation-induced enhanced emission (AIEE).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Mu, Bin, Qian Li, Xiao Li, Shi Pan, Yang Zhou, Jianglin Fang und Dongzhong Chen. „Cyclic polymers with pendant triphenylene discogens: convenient synthesis and topological effect on thermotropic liquid crystal behavior and fluorescence enhancement“. Polymer Chemistry 7, Nr. 39 (2016): 6034–38. http://dx.doi.org/10.1039/c6py01135g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ji, Jinkai, Xiao Li, Tiantian Wu und Fude Feng. „Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells“. Chemical Science 9, Nr. 26 (2018): 5816–21. http://dx.doi.org/10.1039/c8sc01148f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Liu, Renfei, Guanxing Zhu und Gang Zhang. „N-Substitution of acridone with electron-donating groups: crystal packing, intramolecular charge transfer and tuneable aggregation induced emission“. RSC Advances 10, Nr. 12 (2020): 7092–98. http://dx.doi.org/10.1039/c9ra10615d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Qu, Rui, Xu Zhen und Xiqun Jiang. „Emerging Designs of Aggregation-Induced Emission Agents for Enhanced Phototherapy Applications“. CCS Chemistry 4, Nr. 2 (Februar 2022): 401–19. http://dx.doi.org/10.31635/ccschem.021.202101302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Dong, Jinqiao, Yutong Pan, Kuiwei Yang, Yi Di Yuan, Vanessa Wee, Shidang Xu, Yuxiang Wang, Jianwen Jiang, Bin Liu und Dan Zhao. „Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages“. ACS Nano 16, Nr. 2 (27.01.2022): 2355–68. http://dx.doi.org/10.1021/acsnano.1c08605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kong, Lin, Ze Huang, Qi-Yu Chen, Hui-Chao Zhu, Hui Wang, Xian-Yun Xu und Jia-Xiang Yang. „Aggregation-induced enhanced emission of a carbazole derivative with asymmetric group“. Optical Materials 82 (August 2018): 154–59. http://dx.doi.org/10.1016/j.optmat.2018.05.063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Pazini, Alessandra, Luis Maqueira, Fabiano da Silveira Santos, Arthur Rodrigues Jardim Barreto, Rafael dos Santos Carvalho, Felipe Miranda Valente, Davi Back et al. „Designing highly luminescent aryloxy-benzothiadiazole derivatives with aggregation-induced enhanced emission“. Dyes and Pigments 178 (Juli 2020): 108377. http://dx.doi.org/10.1016/j.dyepig.2020.108377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Xing, Ling-Bao, Xiao-Jun Wang, Jing-Li Zhang, Ziyan Zhou und Shuping Zhuo. „Tetraphenylethene-containing supramolecular hyperbranched polymers: aggregation-induced emission by supramolecular polymerization in aqueous solution“. Polymer Chemistry 7, Nr. 3 (2016): 515–18. http://dx.doi.org/10.1039/c5py01741f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Shao, Li, Jifu Sun, Bin Hua und Feihe Huang. „An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host–guest recognition: construction and application in explosive detection“. Chemical Communications 54, Nr. 38 (2018): 4866–69. http://dx.doi.org/10.1039/c8cc02077a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Dong, Yang, Zhaomin Yang, Zhongjie Ren und Shouke Yan. „Synthesis and the aggregation induced enhanced emission effect of pyrene based polysiloxanes“. Polymer Chemistry 6, Nr. 45 (2015): 7827–32. http://dx.doi.org/10.1039/c5py00992h.

Der volle Inhalt der Quelle
Annotation:
A pyrene based polysiloxane (PySQ) has been successfully synthesized, which shows aggregation induced enhanced emission (AIEE) and the AIEE effect endows PySQ with a longer photoluminescence lifetime as determined by transient photoluminescence decay measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Murshid, Nimer, Ken-ichi Yuyama, San-Lien Wu, Kuan-Yi Wu, Hiroshi Masuhara, Chien-Lung Wang und Xiaosong Wang. „Highly-integrated, laser manipulable aqueous metal carbonyl vesicles (MCsomes) with aggregation-induced emission (AIE) and aggregation-enhanced IR absorption (AEIRA)“. Journal of Materials Chemistry C 4, Nr. 23 (2016): 5231–40. http://dx.doi.org/10.1039/c6tc01222a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hariharan, P. S., M. Baby Mariyatra, E. M. Mothi, Antonia Neels, Georgina Rosair und Savarimuthu Philip Anthony. „Polymorphism and benzene solvent controlled stimuli responsive reversible fluorescence switching in triphenylphosphoniumfluorenylide crystals“. New Journal of Chemistry 41, Nr. 11 (2017): 4592–98. http://dx.doi.org/10.1039/c7nj01136a.

Der volle Inhalt der Quelle
Annotation:
Triphenylphosphoniumfluorenylide (TPPFY), a fluorescent fluorene attached molecule, showed polymorphism, benzene solvent induced aggregation enhanced emission (AEE) and external stimuli responsive on–off fluorescence switching.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Balamurugan, Gopal, Sivan Velmathi, Natesan Thirumalaivasan und Shu Pao Wu. „New phenazine based AIE probes for selective detection of aluminium(iii) ions in presence of other trivalent metal ions in living cells“. Analyst 142, Nr. 24 (2017): 4721–26. http://dx.doi.org/10.1039/c7an01478c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Feng, Zhihui, Dandan Li, Mingzhu Zhang, Tao Shao, Yu Shen, Xiaohe Tian, Qiong Zhang, Shengli Li, Jieying Wu und Yupeng Tian. „Enhanced three-photon activity triggered by the AIE behaviour of a novel terpyridine-based Zn(ii) complex bearing a thiophene bridge“. Chemical Science 10, Nr. 30 (2019): 7228–32. http://dx.doi.org/10.1039/c9sc01705d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Palakollu, Veerabhadraiah, und Sriram Kanvah. „Cholesterol-tethered AIEE fluorogens: formation of self-assembled nanostructures“. RSC Advances 5, Nr. 42 (2015): 33049–57. http://dx.doi.org/10.1039/c5ra04417k.

Der volle Inhalt der Quelle
Annotation:
Design and synthesis of cholesterol conjugated chromophores exhibiting intramolecular charge transfer (ICT) and Aggregation Induced Enhanced Emission (AIEE) and their self-assembling behavior is described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

He, Jiangling, Shuang Li, Da Lyu, Dingfeng Zhang, Xiao Wu und Qing-Hua Xu. „Aggregation induced emission enhancement by plasmon coupling of noble metal nanoparticles“. Materials Chemistry Frontiers 3, Nr. 11 (2019): 2421–27. http://dx.doi.org/10.1039/c9qm00455f.

Der volle Inhalt der Quelle
Annotation:
Aggregation induced plasmon coupling enhanced fluorescence of a pre-quenched chromophore has been demonstrated by using Au and Au@Ag nanoparticles, which could be further utilized to develop highly sensitive chemical and biological sensing schemes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

You, Jyun-Guo, und Wei-Lung Tseng. „Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes“. Analytica Chimica Acta 1078 (Oktober 2019): 101–11. http://dx.doi.org/10.1016/j.aca.2019.05.069.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Chen, Jin-Fa, Guoyun Meng, Qian Zhu, Songhe Zhang und Pangkuan Chen. „Pillar[5]arenes: a new class of AIEgen macrocycles used for luminescence sensing of Fe3+ ions“. Journal of Materials Chemistry C 7, Nr. 38 (2019): 11747–51. http://dx.doi.org/10.1039/c9tc03831k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Liu, Xiaomei, und Gaolin Liang. „Dual aggregation-induced emission for enhanced fluorescence sensing of furin activity in vitro and in living cells“. Chemical Communications 53, Nr. 6 (2017): 1037–40. http://dx.doi.org/10.1039/c6cc09106g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Li, Yawen, Yihang Zhang, Xia Zuo und Yuze Lin. „Organic photovoltaic electron acceptors showing aggregation-induced emission for reduced nonradiative recombination“. Chemical Communications 57, Nr. 42 (2021): 5135–38. http://dx.doi.org/10.1039/d1cc01170g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Sun, Wenjing, Li Luo, Yushuo Feng, Yuting Cai, Yixi Zhuang, Rong‐Jun Xie, Xiaoyuan Chen und Hongmin Chen. „Aggregation‐Induced Emission Gold Clustoluminogens for Enhanced Low‐Dose X‐ray‐Induced Photodynamic Therapy“. Angewandte Chemie International Edition 59, Nr. 25 (05.09.2019): 9914–21. http://dx.doi.org/10.1002/anie.201908712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Sun, Wenjing, Li Luo, Yushuo Feng, Yuting Cai, Yixi Zhuang, Rong‐Jun Xie, Xiaoyuan Chen und Hongmin Chen. „Aggregation‐Induced Emission Gold Clustoluminogens for Enhanced Low‐Dose X‐ray‐Induced Photodynamic Therapy“. Angewandte Chemie 132, Nr. 25 (05.09.2019): 10000–10007. http://dx.doi.org/10.1002/ange.201908712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Pandey, Rakesh K., U. Chitgupi und V. Lakshminarayanan. „Porphyrin aggregates in the form of nanofibers and their unusual aggregation induced emission“. Journal of Porphyrins and Phthalocyanines 16, Nr. 09 (September 2012): 1055–58. http://dx.doi.org/10.1142/s1088424612500770.

Der volle Inhalt der Quelle
Annotation:
We present here the simple procedure for synthesizing elongated fibers like porphyrin aggregates. Usually whenever the aggregation in dye molecules takes place the emission always tends to quench. In this work we explore and discuss the unusual enhanced emission property of these aggregates. The nanofibers of porphyrin were characterized with the help of atomic force microscopy and UV-vis spectroscopy whereas photoluminescence spectroscopy was used to check their emission property.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Mukundam, Vanga, Kunchala Dhanunjayarao, Ramesh Mamidala und Krishnan Venkatasubbaiah. „Synthesis, characterization and aggregation induced enhanced emission properties of tetraaryl pyrazole decorated cyclophosphazenes“. Journal of Materials Chemistry C 4, Nr. 16 (2016): 3523–30. http://dx.doi.org/10.1039/c6tc00909c.

Der volle Inhalt der Quelle
Annotation:
We report the synthesis, characterization and aggregation induced enhanced emission (AIEE) properties of a series of tetraaryl pyrazole decorated cyclotriphosphazenes. The hexa-substituted cyclotriphosphazene was tested for its usefulness as a probe for the explosive picric acid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Zheng, Tingting, Jia-Long Xu, Xiao-Jun Wang, Jian Zhang, Xiuling Jiao, Ting Wang und Dairong Chen. „A novel nanoscale organic–inorganic hybrid system with significantly enhanced AIE in aqueous media“. Chemical Communications 52, Nr. 42 (2016): 6922–25. http://dx.doi.org/10.1039/c6cc02857h.

Der volle Inhalt der Quelle
Annotation:
We report the design and fluorescence properties of a novel aggregation-induced emission (AIE) system obtained by grafting carboxyl group conjugated AIE molecules onto monodispersed colloidal GaOOH nanocubes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Kassl, Christopher J., und F. Christopher Pigge. „Anion detection by aggregation-induced enhanced emission (AIEE) of urea-functionalized tetraphenylethylenes“. Tetrahedron Letters 55, Nr. 34 (August 2014): 4810–13. http://dx.doi.org/10.1016/j.tetlet.2014.06.115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zhang, Xiqi, Zhenguo Chi, Bingjia Xu, Chengjian Chen, Xie Zhou, Yi Zhang, Siwei Liu und Jiarui Xu. „End-group effects of piezofluorochromic aggregation-induced enhanced emission compounds containing distyrylanthracene“. Journal of Materials Chemistry 22, Nr. 35 (2012): 18505. http://dx.doi.org/10.1039/c2jm33140c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie