Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Affine diffusions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Affine diffusions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Affine diffusions"
Kelly, Leah, Eckhard Platen und Michael Sørensen. „Estimation for discretely observed diffusions using transform functions“. Journal of Applied Probability 41, A (2004): 99–118. http://dx.doi.org/10.1239/jap/1082552193.
Der volle Inhalt der QuelleKelly, Leah, Eckhard Platen und Michael Sørensen. „Estimation for discretely observed diffusions using transform functions“. Journal of Applied Probability 41, A (2004): 99–118. http://dx.doi.org/10.1017/s0021900200112239.
Der volle Inhalt der QuelleLinetsky, Vadim. „On the transition densities for reflected diffusions“. Advances in Applied Probability 37, Nr. 2 (Juni 2005): 435–60. http://dx.doi.org/10.1239/aap/1118858633.
Der volle Inhalt der QuelleLinetsky, Vadim. „On the transition densities for reflected diffusions“. Advances in Applied Probability 37, Nr. 02 (Juni 2005): 435–60. http://dx.doi.org/10.1017/s0001867800000252.
Der volle Inhalt der QuelleSpreij, Peter, und Enno Veerman. „Affine Diffusions with Non-Canonical State Space“. Stochastic Analysis and Applications 30, Nr. 4 (Juli 2012): 605–41. http://dx.doi.org/10.1080/07362994.2012.684322.
Der volle Inhalt der QuelleDuffie, Darrell, Jun Pan und Kenneth Singleton. „Transform Analysis and Asset Pricing for Affine Jump-diffusions“. Econometrica 68, Nr. 6 (November 2000): 1343–76. http://dx.doi.org/10.1111/1468-0262.00164.
Der volle Inhalt der QuelleBarletta, Andrea, und Elisa Nicolato. „Orthogonal expansions for VIX options under affine jump diffusions“. Quantitative Finance 18, Nr. 6 (05.10.2017): 951–67. http://dx.doi.org/10.1080/14697688.2017.1371322.
Der volle Inhalt der QuelleCHU, CHI CHIU, und YUE KUEN KWOK. „VALUATION OF GUARANTEED ANNUITY OPTIONS IN AFFINE TERM STRUCTURE MODELS“. International Journal of Theoretical and Applied Finance 10, Nr. 02 (März 2007): 363–87. http://dx.doi.org/10.1142/s0219024907004160.
Der volle Inhalt der QuelleAhlip, Rehez, Laurence A. F. Park, Ante Prodan und Stephen Weissenhofer. „Forward start options under Heston affine jump-diffusions and stochastic interest rate“. International Journal of Financial Engineering 08, Nr. 01 (März 2021): 2150005. http://dx.doi.org/10.1142/s2424786321500055.
Der volle Inhalt der QuelleBolyog, Beáta, und Gyula Pap. „On conditional least squares estimation for affine diffusions based on continuous time observations“. Statistical Inference for Stochastic Processes 22, Nr. 1 (05.02.2018): 41–75. http://dx.doi.org/10.1007/s11203-018-9174-z.
Der volle Inhalt der QuelleDissertationen zum Thema "Affine diffusions"
Guida, Francesco. „Measure-valued affine and polynomial diffusions and applications to energy modeling“. Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/336816.
Der volle Inhalt der QuelleDahbi, Houssem. „Ρarametric estimatiοn fοr a class οf multidimensiοnal affine prοcesses“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR089.
Der volle Inhalt der QuelleThis thesis deals with statistical inference of some particular affine diffusion processes in the state space \R_+^m\times\R^n, where m,n\in\N. Such subclass of diffusions, denoted by \mathit{AD}(m,n), is applied to the pricing of bond and stock options, which is illustrated for the Vasicek, Cox-Ingersoll-Ross (CIR) and Heston models. In this thesis, we consider two different cases : the first one is when m=1 and n\in\N and the second one is when m=2 and n=1. For the \mathit{AD}(1,n) model, we introduce, in Chapter 2, a classification result where we distinguish three different cases : subcritical, critical and supercritical. Then, we study the stationarity and the ergodicity of its solution under some assumptions on the drift parameters. For the parameter estimation problem, we use two different methods: the maximum likelihood estimation (MLE) and the conditional least squares estimation (CLSE). In Chapter 2, we present the estimator obtained by the MLE method based on continuous time observations and we study its consistency and its asymptotic behavior in ergodic and particular non-ergodic cases. In Chapter 3, we present the estimator obtained by the CLSE method based on continuous then discrete time observations with high frequency and infinite horizon and we study its consistency and its asymptotic behavior in ergodic and particular non-ergodic cases. It is worth to note here that we obtain the same asymptotic results in both discrete and continuous sets under additional assumptions on the discretization step \Delta_N. In Chapter 4, we study the \mathit{AD}(2,1) model, called also double Heston model, we introduce first its classification with respect to subcritical, critical and supercritical case and we establish the relative stationarity and ergodicity theorems. In the statistical part of this chapter, we study the MLE and the CLSE of the ergodic double Heston model based on continuous time observations and we introduce its consistency and asymtotic normality theorems for each estimation method
Prandi, Dario. „Geometry and analysis of control-affine systems: motion planning, heat and Schrödinger evolution“. Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3913.
Der volle Inhalt der QuelleLahiri, Joydeep. „Affine jump diffusion models for the pricing of credit default swaps“. Thesis, University of Reading, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529979.
Der volle Inhalt der QuelleZhang, Xiang. „Essays on empirical performance of affine jump-diffusion option pricing models“. Thesis, University of Oxford, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.552834.
Der volle Inhalt der QuelleBambe, Moutsinga Claude Rodrigue. „Transform analysis of affine jump diffusion processes with applications to asset pricing“. Diss., Pretoria : [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-06112008-162807.
Der volle Inhalt der QuelleNunes, João Pedro Vidal. „Exponential-affine diffusion term structure models : dimension, time-homogeneity, and stochastic volatility“. Thesis, University of Warwick, 2000. http://wrap.warwick.ac.uk/111008/.
Der volle Inhalt der QuelleBloch, Daniel. „Modèles de diffusion à sauts affine et quadratique : application aux nouvelles options exotiques dans les marchés actions et hybrides“. Paris 6, 2006. http://www.theses.fr/2006PA066635.
Der volle Inhalt der QuelleThis thesis is concerned with the pricing of exotic options within an affine quadratic jump diffusion model. In this case the computational difficulties can be reduced to solving a system of Riccati equations a number of times and performing a numerical integration using the resulting values via the FFT technique. We then present the variance swap contract and explain the reasons why it became a traded underlying. Since the variance swap contract is just a forward on the annualised realised variance we choose to infer its dynamic from the dynamic of the stock price. We therefore make the variance swap the new underlying and diffuse it over time in order to price options on the quadratic variation and more generally derivatives on the volatility. The properties of the affine-quadratic model allow us in some special cases to recover closed-form solutions. To conclude we extend the approach to the hybrid markets and consider the equity-rate and equity-credit products
Gleeson, Cameron Banking & Finance Australian School of Business UNSW. „Pricing and hedging S&P 500 index options : a comparison of affine jump diffusion models“. Awarded by:University of New South Wales. School of Banking and Finance, 2005. http://handle.unsw.edu.au/1959.4/22379.
Der volle Inhalt der QuelleEzzine, Ahmed. „Some topics in mathematical finance. Non-affine stochastic volatility jump diffusion models. Stochastic interest rate VaR models“. Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211156.
Der volle Inhalt der QuelleBücher zum Thema "Affine diffusions"
Duffie, Darrell. Transform analysis and asset pricing for affine jump-diffusions. Cambridge, MA: National Bureau of Economic Research, 1999.
Den vollen Inhalt der Quelle findenAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2.
Der volle Inhalt der QuelleNunes, João Pedro Vidal. Exponential-affine diffusion term structure models: Dimension, time-homogeneity, and stochastic volatility. [s.l.]: typescript, 2000.
Den vollen Inhalt der Quelle findenDurham, J. Benson. Jump-diffusion processes and affine term structure models: Additional closed-form approximate solutions, distributional assumptions for jumps, and parameter estimates. Washington, D.C: Federal Reserve Board, 2005.
Den vollen Inhalt der Quelle findenAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer, 2015.
Den vollen Inhalt der Quelle findenAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer, 2016.
Den vollen Inhalt der Quelle findenAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer International Publishing AG, 2015.
Den vollen Inhalt der Quelle findenvan der Voort, Hein, und Peter Bakker. Polysynthesis and Language Contact. Herausgegeben von Michael Fortescue, Marianne Mithun und Nicholas Evans. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199683208.013.23.
Der volle Inhalt der QuelleBuchteile zum Thema "Affine diffusions"
Alfonsi, Aurélien. „Real Valued Affine Diffusions“. In Bocconi & Springer Series, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2_1.
Der volle Inhalt der QuelleBaldeaux, Jan, und Eckhard Platen. „Pricing Using Affine Diffusions“. In Functionals of Multidimensional Diffusions with Applications to Finance, 199–217. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_8.
Der volle Inhalt der QuelleAlfonsi, Aurélien. „The Heston Model and Multidimensional Affine Diffusions“. In Bocconi & Springer Series, 93–121. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2_4.
Der volle Inhalt der QuelleBaldeaux, Jan, und Eckhard Platen. „Affine Diffusion Processes on the Euclidean Space“. In Functionals of Multidimensional Diffusions with Applications to Finance, 181–98. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_7.
Der volle Inhalt der QuelleBaldeaux, Jan, und Eckhard Platen. „Solvable Affine Processes on the Euclidean State Space“. In Functionals of Multidimensional Diffusions with Applications to Finance, 219–41. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_9.
Der volle Inhalt der QuelleAlfonsi, Aurélien. „Wishart Processes and Affine Diffusions on Positive Semidefinite Matrices“. In Bocconi & Springer Series, 123–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2_5.
Der volle Inhalt der QuellePollari, Mika, Tuomas Neuvonen und Jyrki Lötjönen. „Affine Registration of Diffusion Tensor MR Images“. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 629–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11866763_77.
Der volle Inhalt der QuelleBerger, Marc A. „Random Affine Iterated Function Systems: Mixing and Encoding“. In Diffusion Processes and Related Problems in Analysis, Volume II, 315–46. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_15.
Der volle Inhalt der QuelleMohammed, Salah-Eldin A. „Lyapunov Exponents and Stochastic Flows of Linear and Affine Hereditary Systems“. In Diffusion Processes and Related Problems in Analysis, Volume II, 141–69. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_7.
Der volle Inhalt der QuelleLeemans, Alexander, Jan Sijbers, Steve De Backer, Everhard Vandervliet und Paul M. Parizel. „Affine Coregistration of Diffusion Tensor Magnetic Resonance Images Using Mutual Information“. In Advanced Concepts for Intelligent Vision Systems, 523–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11558484_66.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Affine diffusions"
Shi, Guoqing, Chuanzhe Liu und Yuhua Hou. „Study on the pricing of credit default swap with affine jump-diffusions processes“. In 2006 6th International Conference on Intelligent Systems Design and Applications. IEEE, 2006. http://dx.doi.org/10.1109/isda.2006.251.
Der volle Inhalt der QuelleGogineni, Vinay Chakravarthi, und Mrityunjoy Chakraborty. „Diffusion Affine Projection Algorithm for Multitask Networks“. In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2018. http://dx.doi.org/10.23919/apsipa.2018.8659481.
Der volle Inhalt der QuelleRipaccioli, Giulio, Jason B. Siegel, Anna G. Stefanopoulou und Stefano Di Cairano. „Derivation and Simulation Results of a Hybrid Model Predictive Control for Water Purge Scheduling in a Fuel Cell“. In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2729.
Der volle Inhalt der QuelleShi, Juan, Jingen Ni und Xiaoping Chen. „Variable step-size diffusion proportionate affine projection algorithm“. In 2016 IEEE International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2016. http://dx.doi.org/10.1109/iwaenc.2016.7602940.
Der volle Inhalt der QuelleSitjongsataporn, Suchada, Sethakarn Prongnuch und Theerayod Wiangtong. „Diffusion Affine Projection Sign Algorithm based on QR-Decomposition“. In 2021 9th International Electrical Engineering Congress (iEECON). IEEE, 2021. http://dx.doi.org/10.1109/ieecon51072.2021.9440282.
Der volle Inhalt der QuelleSong, Pucha, Haiquan Zhao und Yingying Zhu. „Diffusion Affine Projection M-Estimate Algorithm for Multitask Networks“. In 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2021. http://dx.doi.org/10.1109/iciea51954.2021.9516274.
Der volle Inhalt der QuelleAlghunaim, S. A., K. Yuan und A. H. Sayed. „Dual Coupled Diffusion for Distributed Optimization with Affine Constraints“. In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619343.
Der volle Inhalt der QuelleXiangfen Zhang, Hong Ye und Zuolei Sun. „Affine invariant diffusion smoothing strategy for vector-valued images“. In 2009 International Conference on Future BioMedical Information Engineering (FBIE 2009). IEEE, 2009. http://dx.doi.org/10.1109/fbie.2009.5405768.
Der volle Inhalt der QuelleGogineni, Vinay Chakravarthi, und Mrityunjoy Chakraborty. „Partial Diffusion Affine Projection Algorithm Over Clustered Multitask Networks“. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702110.
Der volle Inhalt der QuelleMiguel Bravo, Jorge. „Pricing Survivor Bonds with Affine-Jump Diffusion Stochastic Mortality Models“. In ICEEG '21: 2021 The 5th International Conference on E-Commerce, E-Business and E-Government. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3466029.3466037.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Affine diffusions"
Duffie, Darrell, Jun Pan und Kenneth Singleton. Transform Analysis and Asset Pricing for Affine Jump-Diffusions. Cambridge, MA: National Bureau of Economic Research, April 1999. http://dx.doi.org/10.3386/w7105.
Der volle Inhalt der QuelleDresner, L. Asymptotic behavior of solutions of diffusion-like partial differential equations invariant to a family of affine groups. Office of Scientific and Technical Information (OSTI), Juli 1990. http://dx.doi.org/10.2172/6697591.
Der volle Inhalt der Quelle