Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Aerial roots“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Aerial roots" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Aerial roots"
Jolly, Margaret. „Aerial roots“. Women's Studies International Forum 21, Nr. 6 (November 1998): 663–64. http://dx.doi.org/10.1016/s0277-5395(98)00079-x.
Der volle Inhalt der QuellePerez, Craig Santos. „From "aerial Roots"“. Iowa Review 40, Nr. 2 (Oktober 2010): 108–12. http://dx.doi.org/10.17077/0021-065x.6906.
Der volle Inhalt der QuellePerez, Craig Santos. „Ginen "aerial Roots"“. Iowa Review 40, Nr. 2 (Oktober 2010): 113. http://dx.doi.org/10.17077/0021-065x.6907.
Der volle Inhalt der QuelleAbasolo, W. P., M. Yoshida, H. Yamamoto und T. Okuyama. „Stress Generation In Aerial Roots Of Ficus Elastica (Moraceae)“. IAWA Journal 30, Nr. 2 (2009): 216–24. http://dx.doi.org/10.1163/22941932-90000216.
Der volle Inhalt der QuelleWilder, George J. „Comparative morphology and anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae (Monocotyledoneae)“. Canadian Journal of Botany 70, Nr. 1 (01.01.1992): 38–48. http://dx.doi.org/10.1139/b92-006.
Der volle Inhalt der QuelleInoue, Tomomi, Ayato Kohzu und Ayako Shimono. „Tracking the route of atmospheric nitrogen to diazotrophs colonizing buried mangrove roots“. Tree Physiology 39, Nr. 11 (01.11.2019): 1896–906. http://dx.doi.org/10.1093/treephys/tpz088.
Der volle Inhalt der QuelleReddell, Paul, Michael S. Hopkins und Andrew W. Graham. „Functional association between apogeotropic aerial roots, mycorrhizas and paper-barked stems in a lowland tropical rainforest in North Queensland“. Journal of Tropical Ecology 12, Nr. 6 (November 1996): 763–77. http://dx.doi.org/10.1017/s0266467400010014.
Der volle Inhalt der QuelleMundkinajeddu, Deepak, Laxman P. Sawant, Rojison Koshy, Praneetha Akunuri, Vineet Kumar Singh, Anand Mayachari, Maged H. M. Sharaf, Murali Balasubramanian und Amit Agarwal. „Development and Validation of High Performance Liquid Chromatography Method for Simultaneous Estimation of Flavonoid Glycosides in Withania somnifera Aerial Parts“. ISRN Analytical Chemistry 2014 (10.03.2014): 1–6. http://dx.doi.org/10.1155/2014/351547.
Der volle Inhalt der QuelleSU, J. J., Y. J. CHEN und Y. C. CHANG. „A study of a pilot-scale biogas bio-filter system for utilization on pig farms“. Journal of Agricultural Science 152, Nr. 2 (17.01.2013): 217–24. http://dx.doi.org/10.1017/s0021859612001086.
Der volle Inhalt der QuelleLamb, Thomas G., David W. Tonkyn und Daniel A. Kluepfel. „Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue“. Canadian Journal of Microbiology 42, Nr. 11 (01.11.1996): 1112–20. http://dx.doi.org/10.1139/m96-143.
Der volle Inhalt der QuelleDissertationen zum Thema "Aerial roots"
Manzi, Fraga Matías Jesús. „Involvement of aerial organs on the ABA accumulation in roots of Citrus plants under water deficit“. Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/387227.
Der volle Inhalt der QuelleWater deficit is one of the most detrimental conditions for plant growth and survival. However, plants have developed several strategies to cope with this condition including the rapid accumulation of abscisic acid (ABA). For years, it has been assumed that dehydration is perceived by roots which stimulate the ABA increase which is further transported to leaves to regulate the stomatal aperture. In this thesis, this model is questioned since several lines of evidence indicate that roots could not sustain larger increases of ABA. Here it is provided evidence that roots of Citrus plants are not an important source of ABA under water deficit and conversely, leaves sustain the accumulation of ABA in those dehydrated roots. Furthermore, data present here suggest that leaves are key not only in providing ABA to roots but also in triggering the water stress responses which lead to the ABA accumulation in both, leaves and roots.
Risante, Ana Paula de Oliveira. „Biodiversidade e estoques de carbono de um Cerrado stricto sensu na Reserva Biológica de Mogi Guaçu-SP“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/91/91131/tde-17072017-121713/.
Der volle Inhalt der QuelleDeforestation for agricultural use is one of the main causes of the devastation of Brazilian biomes such as the Amazon forest, the cerrado and the Atlantic forest. The big extension of the deforestation with the felling and burning of vegetation is the main cause of the greenhouse gas emissions in Brazil - 4th largest worldwide issuer. A large percentage of the stored carbon is found in the aerial biomass of the vegetable physiognomy, while, in the cerrado vegetation, the underground biomass corresponds the most of part. There are few studies carried out about the carbon stimates in the underground biomass, or even in the aerial biomass, of the cerrado vegetation. The purpose of this research was to relate aerial and underground carbon stocks of a stricto sensu cerrado existing in the Mogi Guaçu- SP Biological Reserve (Martinho Prado Junior-SP) with your biodiversity. For this has been established, systematically, ten plots of 10X50 meters subdivided every 10 meters. All the plants with breast height diameters (DAPs) of the trunks larger than 5 centimeters were measured and identified at the species level calculating the indices of: Shannon-Wiener diversity, Pielou equitability and species richness. The aerial biomass and carbon of these trees were calculated with the aid of equations established in the literature. Root samples were collected with the use of a manual digger for to determine their biomass and carbon stocks. Undisturbed soil samples were collected in different depths for calculating of the soil density and the determination of the soil organic carbon. The study area presented 65 different species and 773 trees. The most recurrent plant species were: Xylopia aromatica (monkey pepper) (10,9%), seguida por Syagrus flexuosa (coconut baboon) (8,8%), Copaifera langsdorffii (oil dick) (8,67%), Qualea grandiflora (dick-sand) (8,41%). There was a significant positive correlation between Shannon diversity and aerial biomass and carbon. The highest indices of the Shannon diversity presented were 2,966 and 2,927. The medium aerial biomass was 37,412 Mg.ha-1 and the medium aerial carbon was 19,65 Mg.ha-1. The medium roots biomass was 3,20 Mg.ha-1 with a carbon content is varying from 48 to 54%.The medium soil carbon was 8,51 Mg.ha-1. The portion of the soil in the depths of the 0-10 centimeters presented the highest organic carbon concentration. On the other side, the soil density presented the higher values in layers of 20-30 cm depth. There was a significant negative correlation between soil density and the soil organic carbon.
Boeuf, Alexandre. „Kinodynamic motion planning for quadrotor-like aerial robots“. Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/20169/1/Boeuf.pdf.
Der volle Inhalt der QuelleNagori, Chinmay. „Unmanned Aerial Manipulators in Construction - Opportunities and Challenges“. Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/101663.
Der volle Inhalt der QuelleMaster of Science
Drones or Unmanned Aerial Manipulators have been used in the construction industry to collect visual data in form of images, videos, or to map surveys, and visually inspect the structures. However, if equipped with a robotic arm, they attain the capability of touching and interacting with the environment to effectively function as an Unmanned Aerial Manipulator (UAM). UAMs have researched for various applications such as sensor installation, touch-based sensor inspections, door opening, and closing, and pick up and drop, etc. However, there is a lack of study for their opportunities and challenges in the construction industry. This research focuses on understanding the opportunities and challenges associated with the application of UAMs in the construction industry.
Dierks, Travis. „Formation control of mobile robots and unmanned aerial vehicles“. Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Dierks_09007dcc806d7f16.pdf.
Der volle Inhalt der QuelleVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed January 13, 2009) Includes bibliographical references.
Cowlagi, Raghvendra V. „Hierarchical motion planning for autonomous aerial and terrestrial vehicles“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41066.
Der volle Inhalt der QuelleShah, Syed Irtiza Ali. „Single camera based vision systems for ground and; aerial robots“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37143.
Der volle Inhalt der QuelleSelvatici, Luca. „Distributed cooperative MPC for aerial robots: a ROS 2 implementation“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Den vollen Inhalt der Quelle findenChamberlain, Caleb H. „System Identification, State Estimation, and Control of Unmanned Aerial Robots“. BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2605.
Der volle Inhalt der QuelleGeisert, Mathieu. „Optimal control and machine learning for humanoid and aerial robots“. Thesis, Toulouse, INSA, 2018. http://www.theses.fr/2018ISAT0011/document.
Der volle Inhalt der QuelleWhat are the common characteristics of humanoid robots and quadrotors? Well, not many… Therefore, this thesis focuses on the development of algorithms allowing to dynamically control a robot while staying generic with respect to the model of the robot and the task that needs to be solved. Numerical optimal control is good candidate to achieve such objective. However, it suffers from several difficulties such as a high number of parameters to tune and a relatively important computation time. This document presents several ameliorations allowing to reduce these problems. On one hand, the tasks can be ordered according to a hierarchy and solved with an appropriate algorithm to lower the number of parameters to tune. On the other hand, machine learning can be used to initialize the optimization solver or to generate a simplified model of the robot, and therefore can be used to decrease the computation time
Bücher zum Thema "Aerial roots"
Martin, N. E. Using aerial photos to fingerprint a stand for root disease research. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1986.
Den vollen Inhalt der Quelle findenMartin, N. E. Using aerial photos to fingerprint a stand for root disease research. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1986.
Den vollen Inhalt der Quelle findenBestaoui Sebbane, Yasmina. Planning and Decision Making for Aerial Robots. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03707-3.
Der volle Inhalt der QuelleVepa, Ranjan. Nonlinear Control of Robots and Unmanned Aerial Vehicles. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2016. http://dx.doi.org/10.1201/9781315367378.
Der volle Inhalt der QuelleTognon, Marco, und Antonio Franchi. Theory and Applications for Control of Aerial Robots in Physical Interaction Through Tethers. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-48659-4.
Der volle Inhalt der QuelleAerial Vehicles. InTech, 2009.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Regulation of nitrogen uptake and assimulation: Effects of nitrogen source and root-zone and aerial environment on growth and productivity of soybean : final technical report. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenWei, Wang, Satoshi Suzuki, Farid Kendoul, Kenzo Nonami und Daisuke Nakazawa. Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles. Springer, 2014.
Den vollen Inhalt der Quelle findenAutonomous Flying Robots Unmanned Aerial Vehicles And Micro Aerial Vehicles. Springer, 2010.
Den vollen Inhalt der Quelle findenMejia, Omar Dario Lopez, und Jaime Alberto Escobar Gomez, Hrsg. Aerial Robots - Aerodynamics, Control and Applications. InTech, 2017. http://dx.doi.org/10.5772/65604.
Der volle Inhalt der QuelleBuchteile zum Thema "Aerial roots"
Streeten, Paul. „Aerial Roots“. In Recollections of Eminent Economists, 73–98. London: Palgrave Macmillan UK, 1989. http://dx.doi.org/10.1007/978-1-349-09776-0_3.
Der volle Inhalt der QuelleSiddall, Robert, und Mirko Kovac. „Bioinspired Aerial Robots“. In Encyclopedia of Robotics, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_70-1.
Der volle Inhalt der QuelleMarchant, Gary E., Braden Allenby, Ronald C. Arkin, Jason Borenstein, Lyn M. Gaudet, Orde Kittrie, Patrick Lin, George R. Lucas, Richard O’Meara und Jared Silberman. „International Governance of Autonomous Military Robots“. In Handbook of Unmanned Aerial Vehicles, 2879–910. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_102.
Der volle Inhalt der QuelleNonami, Kenzo, Farid Kendoul, Satoshi Suzuki, Wei Wang und Daisuke Nakazawa. „Guidance and Navigation Systems for Small Aerial Robots“. In Autonomous Flying Robots, 219–50. Tokyo: Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-53856-1_10.
Der volle Inhalt der QuelleNonami, Kenzo, Farid Kendoul, Satoshi Suzuki, Wei Wang und Daisuke Nakazawa. „Mathematical Modeling and Nonlinear Control of VTOL Aerial Vehicles“. In Autonomous Flying Robots, 161–93. Tokyo: Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-53856-1_8.
Der volle Inhalt der QuelleMahony, Robert, Randal W. Beard und Vijay Kumar. „Modeling and Control of Aerial Robots“. In Springer Handbook of Robotics, 1307–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_52.
Der volle Inhalt der QuelleScaramuzza, Davide, und Zichao Zhang. „Aerial Robots, Visual-Inertial Odometry of“. In Encyclopedia of Robotics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_71-1.
Der volle Inhalt der QuelleLiu, Yun-ping, Xian-ying Li, Tian-miao Wang, Yong-hong Zhang und Ping Mei. „The Stability Analysis of Quadrotor Unmanned Aerial Vechicles“. In Wearable Sensors and Robots, 383–94. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2404-7_30.
Der volle Inhalt der QuelleKlaptocz, Adam, und Jean-Daniel Nicoud. „Technology and Fabrication of Ultralight Micro-Aerial Vehicles“. In Flying Insects and Robots, 299–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89393-6_21.
Der volle Inhalt der QuelleBachmann, Richard J., Ravi Vaidyanathan, Frank J. Boria, James Pluta, Josh Kiihne, Brian K. Taylor, Robert H. Bledsoe, Peter G. Ifju und Roger D. Quinn. „A Miniature Vehicle with Extended Aerial and Terrestrial Mobility“. In Flying Insects and Robots, 247–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89393-6_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Aerial roots"
Pant, D. D., und Kabita Das. „Occurrence of Non-Coralloid Aerial Roots in Cycas“. In Symposium CYCAD 87. The New York Botanical Garden Press, 1990. http://dx.doi.org/10.21135/893273507.004.
Der volle Inhalt der QuelleOgiyama, Shinichi, Nobuyoshi Ishii und Shigeo Uchida. „Uptake of 14C-Acetic Acid by Rice Plant as Related to Root Function and Microbial Activity on the Root Surface“. In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16111.
Der volle Inhalt der QuelleCumhur, B., D. Kırcı, Kılıç CS, B. Demirci und H. Duman. „Essential oil composition of roots, aerial parts and fruits of Ferulago pauciradiata Boiss. & Heldr“. In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399879.
Der volle Inhalt der QuelleWilliams, Robert L., Elvedin Kljuno und J. Jim Zhu. „Spatial 3-SUR 1-RU Platform Robot Inverse Orientation Kinematics“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59291.
Der volle Inhalt der QuelleGreen, William E., Paul Y. Oh und Seunghyun Yoon. „An Acquisition and Distribution System for Situational Awareness“. In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55422.
Der volle Inhalt der QuelleMichael, Nathan, Soonkyum Kim, Jonathan Fink und Vijay Kumar. „Kinematics and Statics of Cooperative Multi-Robot Aerial Manipulation With Cables“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87677.
Der volle Inhalt der QuelleGreen, William E., Paul Y. Oh, Keith Sevcik und Geoffrey Barrows. „Autonomous Landing for Indoor Flying Robots Using Optic Flow“. In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55424.
Der volle Inhalt der QuelleOmari, Sammy, Pascal Gohl, Michael Burri, Markus Achtelik und Roland Siegwart. „Visual industrial inspection using aerial robots“. In 2014 3rd International Conference on Applied Robotics for the Power Industry (CARPI 2014). IEEE, 2014. http://dx.doi.org/10.1109/carpi.2014.7030056.
Der volle Inhalt der QuelleNaldi, Roberto, Francesco Forte und Lorenzo Marconi. „A class of modular aerial robots“. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6161298.
Der volle Inhalt der QuelleSteich, Kelly, Mina Kamel, Paul Beardsley, Martin K. Obrist, Roland Siegwart und Thibault Lachat. „Tree cavity inspection using aerial robots“. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759713.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Aerial roots"
Bruder, Brittany L., Katherine L. Brodie, Tyler J. Hesser, Nicholas J. Spore, Matthew W. Farthing und Alexander D. Renaud. guiBath y : A Graphical User Interface to Estimate Nearshore Bathymetry from Hovering Unmanned Aerial System Imagery. Engineer Research and Development Center (U.S.), Februar 2021. http://dx.doi.org/10.21079/11681/39700.
Der volle Inhalt der Quelle