Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Advanced nanomaterials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Advanced nanomaterials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Advanced nanomaterials"
Titus, Elby, João Ventura, João Pedro Araújo und João Campos Gil. „Advanced nanomaterials“. Applied Surface Science 424 (Dezember 2017): 1. http://dx.doi.org/10.1016/j.apsusc.2017.05.104.
Der volle Inhalt der QuellePark, Sehyun, Hojoong Kim, Jong-Hoon Kim und Woon-Hong Yeo. „Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics“. Materials 13, Nr. 16 (13.08.2020): 3587. http://dx.doi.org/10.3390/ma13163587.
Der volle Inhalt der QuelleTaubert, Andreas, Fabrice Leroux, Pierre Rabu und Verónica de Zea Bermudez. „Advanced hybrid nanomaterials“. Beilstein Journal of Nanotechnology 10 (20.12.2019): 2563–67. http://dx.doi.org/10.3762/bjnano.10.247.
Der volle Inhalt der QuelleTitus, Elby, João Campos Gil, João Ventura und João Pedro Araújo. „Preface: Advanced Nanomaterials“. Journal of Applied Physics 120, Nr. 5 (07.08.2016): 051601. http://dx.doi.org/10.1063/1.4960078.
Der volle Inhalt der QuelleTiwari, Ashutosh. „Advanced Nanomaterials - Recent Developments“. Advanced Materials Letters 7, Nr. 11 (01.11.2016): 851. http://dx.doi.org/10.5185/amlett.2016.11001.
Der volle Inhalt der QuelleTanaka, Takaho, und Konstantin Iakoubovskii. „Focus on Advanced Nanomaterials“. Science and Technology of Advanced Materials 11, Nr. 5 (Oktober 2010): 050201. http://dx.doi.org/10.1088/1468-6996/11/5/050201.
Der volle Inhalt der QuelleEftekhari, Aziz, Solmaz Maleki Dizaj, Elham Ahmadian, Agata Przekora, Seyed Mahdi Hosseiniyan Khatibi, Mohammadreza Ardalan, Sepideh Zununi Vahed et al. „Application of Advanced Nanomaterials for Kidney Failure Treatment and Regeneration“. Materials 14, Nr. 11 (29.05.2021): 2939. http://dx.doi.org/10.3390/ma14112939.
Der volle Inhalt der QuelleAhmed, Faheem, Ameer Azam, Mohammad Mansoob Khan und Samuel M. Mugo. „Advanced Nanomaterials for Biological Applications“. Journal of Nanomaterials 2018 (29.08.2018): 1–2. http://dx.doi.org/10.1155/2018/3692420.
Der volle Inhalt der QuelleHuang, Haoyuan, und Jonathan F. Lovell. „Advanced Functional Nanomaterials for Theranostics“. Advanced Functional Materials 27, Nr. 2 (07.11.2016): 1603524. http://dx.doi.org/10.1002/adfm.201603524.
Der volle Inhalt der QuellePham, Thanh-Dong, Nguyen Van Noi, Ajit Kumar Sharma und Van-Duong Dao. „Advanced Nanomaterials for Green Growth“. Journal of Chemistry 2020 (16.03.2020): 1–2. http://dx.doi.org/10.1155/2020/9567121.
Der volle Inhalt der QuelleDissertationen zum Thema "Advanced nanomaterials"
Tsikourkitoudi, Vasiliki P. „Development of advanced nanomaterials for lithium-ion batteries“. Thesis, Kingston University, 2016. http://eprints.kingston.ac.uk/37347/.
Der volle Inhalt der QuelleZamani, Reza. „Structure nanoengineering of functional nanomaterials. Advanced electron microscopy study“. Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/145318.
Der volle Inhalt der QuelleEn este trabajo hemos estudiado materiales avanzados con las últimas tecnologías y metodologías de microscopía electrónica, las que tienen un impacto importante en el desarrollo de la ciencia de materiales. El objetivo principal ha sido estudiar fenómenos como el politipismo, morfologías inusuales, ramificación, ‘ramificación politípica’, manipulación de la estructura de banda, ordenación de los cationes, polaridad, crecimiento e interfase epitaxial, alojamiento de una fase secundaria en una base, etc. para razonar la influencia de aquellos fenómenos en las propiedades y aplicaciones, por ejemplo la termoelectricidad, el funcionamiento de unión p-n, la eficiencia de las celdas solares, las propiedades optoelectrónicas, la respuesta de los sensores, etc. Distintos semiconductores han sido caracterizados: nanopartículas de calcogenuros complejos, nanohilos de óxidos de metales, y nanohilos del grupo III-V. Hemos estudiado los materiales en escala nanométrica por medio de métodos avanzados de microscopía electrónica de transmisión (TEM). El capítulo 1 es una breve introducción a la tesis, en la que se exponen los objetivos principales del trabajo, los últimos avances (state-of-the-art), los retos, y las nuevas posibilidades. En el capítulo 2 se explica la metodología de TEM utilizada para estudiar los semiconductores. Los capítulos 3 a 5 se componen de los resultados. El capítulo 3 está basado en el análisis de las nanopartículas de calcogenuros complejos. La sección de resultados contiene tres partes: monoestructurados, multiestructurados, y heteroestructuradas de tipo core-shell. En caso de nanopartículas cuaternarias de CCTSe, las nanopartículas ramifican y forman polipodes, que es el caso de un estudio elaborado porque el mecanismo de la ramificación es interesante. En capítulo 4 se trabaja con los nanohilos de óxidos de metales que sirven para muchas aplicaciones como celdas solares o sensores de gas. En nuestro caso, con el objetivo de mejorar la funcionalidad de los aparatos, hemos estudiado heteroestructuras. En el capítulo 5 prácticamente la misma aproximación está escogida, pero esta vez con nanohilos del grupo III-V. Aquí hemos enfatizado la importancia del crecimiento epitaxial de heteroestructuras. Por último, en el capítulo 6 hemos hablado de las conclusiones generales y las perspectivas para la investigación futura.
Russo, Lorenzo. „Designing advanced nanomaterials for next generation in vitro diagnostics: development of optical and electrochemical biosensors for determination of viral and bacterial infections based on hollow AuAg nanoparticles“. Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/666751.
Der volle Inhalt der QuelleIn this PhD thesis, the rational design of advanced nanomaterials with controlled properties was applied for their employment in biosensing, leading to the development of two diagnostic platforms for the determination of viral and bacterial infections. Firstly, a highly reproducible and robust synthetic method for the production of monodisperse AuAg alloy NSs based on GRR was developed. The protocol described allows the precise control over the particles’ morphology, in terms of shell thicknesses and void sizes, the relative composition and topological distribution of their constituting noble metals, as well as their surface roughness and porosity. This synthetic predictability, tested over a range of sizes, has been achieved through a systematic study of the convoluted interplay of each co-reagent, together with a detailed characterization of the material’s composition and structure through an array of techniques. Moreover, the analysis of AuAg NSs’ plasmonic properties evolution during their structural transformation, which spanned through almost the whole visible spectrum up to NIR wavelengths, revealed a tight dependence with their morphological and compositional features. These results, also confirmed by calculations based on Mie’s theory, provided the basis for their application as signal enhancers in the SERS-based LFA developed. Secondly, for the first time the electrochemical behavior of AuAg NSs was reported. Triggered by the controlled corrosion of Ag atoms contained in the particles’ residual cores and thin alloy shells, the voltammetric study of these hollow nanocrystals has been found to be strongly dependent on their relative elemental composition and, partially, to their size and morphology. Indeed, a peculiar electrocatalytic effect appeared only for AuAg NSs possessing a high-enough Au/Ag ratio to let the catalytic electrodeposition of Ag+ on the NSs’ surfaces occur at potentials less negative than Ag standard reduction one. Interestingly, this unreported feature was shown to be triggered only by the mild oxidating character of the electrolyte used, without the need of any other co-reagent or oxidizer. These findings constituted the rational basis for developing AuAg NSs with desirable properties to be applied in the electrochemical assay described. Taking advantage of the tunable plasmonic properties of AuAg NSs, the development of a SERS-based LFA for the sensitive and quantitative detection of MxA, a biomarker commonly associated to viral infections, was achieved. Thanks to the enhanced plasmons intensities displayed by AuAg NSs, resulting from the plasmonic cavity effect commonly observed in hollow nanostructures, their surfaces acted as a continuous hot-spot, amplifying any Raman signal emitted by the reporters thereby attached. Moreover, the possibility to precisely adjust AuAg NSs’ LSPR maximum wavelength to match the NIR excitation laser used during SERS measurements allowed to further improve the overall analytical performance. Thus, AuAg NSs were easily conjugated with anti-MxA antibodies and integrated in a LFA in order to reveal its presence in spiked serum samples. After careful optimization of the point-of-care platform parameters, MxA protein could be successfully detected down to the analytically-relevant LOD of few ng/mL. Finally, the capability to precisely modulate AuAg NSs elemental composition lead to the design of a proof-of-concept electrochemical assay for the rapid detection of two model bacterial strains, Escherichia coli and Salmonella typhimurium. AuAg NSs were used as electrochemical reporters because of the ease of generation of the electrochemical signal, triggered by the sole mild oxidating character of the biological sample matrix. Besides, the polymeric coating of the hollow particles provided the non-specific, affinity-based interaction with bacterial cells in solution, avoiding the need for costly and fragile antibodies. With this low-cost strategy, E.coli could be detected in PBS down to 102 CFU/mL, while the semi-selective discrimination of the current-concentration profiles of the two model bacterial strains was also achieved.
Lin, Yan. „Advanced nanomaterials for fuel cell catalysts characterization of bimetallic nanoparticles /“. Diss., Online access via UMI:, 2006.
Den vollen Inhalt der Quelle findenShmeliov, Aleksey. „Transmission electron imaging and diffraction characterisation of 2D nanomaterials“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4bc4d60f-4db0-43d2-9119-cb0a0366090e.
Der volle Inhalt der QuelleLiu, Kewei. „FABRICATION OF STRUCTURED POLYMER AND NANOMATERIALS FOR ADVANCED ENERGY STORAGE AND CONVERSION“. University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1542022285390711.
Der volle Inhalt der QuelleMelinte, Georgian. „Advanced 3D and in-situ TEM approaches applied to carbon-based and zeolitic nanomaterials“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE009/document.
Der volle Inhalt der QuelleIn this thesis, advanced Transmission Electron Microscopy (TEM) techniques are used to characterize and fabricate new nanomaterials with applications in nanoelectronics and catalysis. Three types of functionalized materials are investigated: nanopatterned few-layer graphene (FLG), carbon nanotubes(CNTs) and mesoporous zeolites. The nanopatterning process of FLG flakes by iron nanoparticles (NPs) is studied using an approach combining electron tomography (ET) and environmental TEM. The role of the nanoparticle faceting and of the FLG topographic parameters has been quantitatively determined leading to the first determination of the operating mechanism of the patterning process. The mass transfer of metallic-based NPs between two carbon nanostructures was studied as well in real-time by using a TEMSTMholder. The protocol of controlling the mass transfer, the chemical and structural transformations of the NPs, the growth mechanism of the new NPs and other related phenomena were carefully investigated.The last part deals with the low-dose ET investigation of the porosity induced in two classes of zeolites,ZSM-5 and zeolite Y, by an innovative fluoride-based chemical treatment
Oben, Delphine. „Synthesis of advanced hybrid polymeric nanomaterials and characterization of novel silsesquioxanes with desirable superhydrophobic coating properties“. Thesis, Open University, 2016. http://oro.open.ac.uk/48062/.
Der volle Inhalt der QuelleWang, Weiliang. „Novel functional nano-coatings on glass by spray deposition“. Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:45bd0d35-111e-4855-96f1-edf109e65b7b.
Der volle Inhalt der QuelleSearle, Andrew. „Application of nanostructured emitters for high efficiency lighting“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:81731b64-c40b-4c76-9c90-dae7c956e29f.
Der volle Inhalt der QuelleBücher zum Thema "Advanced nanomaterials"
Nishide, Hiroyuki, und Kurt E. Geckeler. Advanced nanomaterials. Weinheim: Wiley-VCH, 2010.
Den vollen Inhalt der Quelle findenHosseinkhani, Hossein. Nanomaterials in Advanced Medicine. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527818921.
Der volle Inhalt der QuelleGiri, P. K., D. K. Goswami und A. Perumal, Hrsg. Advanced Nanomaterials and Nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34216-5.
Der volle Inhalt der QuelleRahmandoust, Moones, und Majid R. Ayatollahi, Hrsg. Nanomaterials for Advanced Biological Applications. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10834-2.
Der volle Inhalt der QuelleGautam, Ravindra Kumar. Advanced Nanomaterials for Wastewater Remediation. Boca Raton : Taylor & Francis Group, a CRC title, part of the: CRC Press, 2016. http://dx.doi.org/10.1201/9781315368108.
Der volle Inhalt der QuelleOnishi, Taku, Hrsg. Theoretical Chemistry for Advanced Nanomaterials. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0006-0.
Der volle Inhalt der QuelleBonča, Janez, und Sergei Kruchinin, Hrsg. Advanced Nanomaterials for Detection of CBRN. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2030-2.
Der volle Inhalt der QuelleLu, Wen, Jong-Beom Baek und Liming Dai, Hrsg. Carbon Nanomaterials for Advanced Energy Systems. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118980989.
Der volle Inhalt der QuelleOzoemena, Kenneth I., und Shaowei Chen, Hrsg. Nanomaterials in Advanced Batteries and Supercapacitors. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26082-2.
Der volle Inhalt der QuelleSingh, Lakhveer, und Durga Madhab Mahapatra, Hrsg. Adapting 2D Nanomaterials for Advanced Applications. Washington, DC: American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1353.
Der volle Inhalt der QuelleBuchteile zum Thema "Advanced nanomaterials"
Fei, Dan, Songjun Li, Christian Cimorra und Yi Ge. „Advanced Nanoparticles in Medical Biosensors“. In Biosensor Nanomaterials, 37–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635160.ch2.
Der volle Inhalt der QuelleBoddeti, Govindh, Venu Reddy und B. S. Diwakar. „Nanomaterials for Advanced Microbiology“. In Nanotechnology for Advances in Medical Microbiology, 207–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9916-3_8.
Der volle Inhalt der QuelleChoudhury, Soumyadip, und Manfred Stamm. „Hybrid Nanostructured Materials for Advanced Lithium Batteries“. In Hybrid Nanomaterials, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch1.
Der volle Inhalt der QuelleSrivastava, Suneel Kumar, und Vikas Mittal. „Advanced Nanostructured Materials in Electromagnetic Interference Shielding“. In Hybrid Nanomaterials, 241–320. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch5.
Der volle Inhalt der QuelleAl-Khalaf, Alaa K. H., und Falah H. Hussein. „Green and Sustainable Advanced Nanomaterials“. In Green and Sustainable Advanced Materials, 93–106. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119407089.ch4.
Der volle Inhalt der QuelleFulekar, M. H., und Bhawana Pathak. „Advanced Instruments: Characterization of Nanomaterials“. In Environmental Nanotechnology, 193–224. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315157214-8.
Der volle Inhalt der QuelleTahir, Muhammad Bilal, und Khalid Nadeem Riaz. „Hybrid Nanomaterials for Advanced Photocatalysis“. In Nanomaterials and Photocatalysis in Chemistry, 117–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0646-5_6.
Der volle Inhalt der QuelleWang, X. D., Z. L. Wang, H. J. Jiang, L. Zhu, C. P. Wong und J. E. Morris. „Nanomaterials and Nanopackaging“. In Materials for Advanced Packaging, 503–45. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-78219-5_15.
Der volle Inhalt der QuelleKralj, Anita Kovač. „Advanced Silver and Oxide Hybrids of Catalysts During Formaldehyde Production“. In Intelligent Nanomaterials, 91–106. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119242628.ch4.
Der volle Inhalt der QuelleFigovsky, O., D. Beilin und N. Blank. „Advanced Material Nanotechnology in Israel“. In Nanomaterials: Risks and Benefits, 275–86. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9491-0_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Advanced nanomaterials"
Wujcik, Evan K., und Yang Lu. „Advanced Nanomaterials for Bio-Monitoring“. In SoutheastCon 2018. IEEE, 2018. http://dx.doi.org/10.1109/secon.2018.8479069.
Der volle Inhalt der QuelleGreen, Martin A. „Nanomaterials for Photovoltaics“. In Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.jsa1a.1.
Der volle Inhalt der QuelleFaraon, Victor, Rodica-Mariana Ion, Simona-Florentina Pop, Raluca Van-Staden und Jacobus-Frederick Van-Staden. „Porphyrins as molecular nanomaterials“. In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, herausgegeben von Paul Schiopu und George Caruntu. SPIE, 2010. http://dx.doi.org/10.1117/12.882110.
Der volle Inhalt der QuelleBi, Yong-guang, und Meng-qian Huang. „Preparation with Orthogonal Hydroxyapatite Nanomaterials“. In 2015 International Conference on Advanced Material Engineering. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696029_0066.
Der volle Inhalt der QuelleMinh, Le Quoc, Tran Kim Anh, Nguyen Thanh Binh und Vu Doan Mien. „New nanomaterials for photonic application“. In 2ND ASEAN - APCTP WORKSHOP ON ADVANCED MATERIALS SCIENCE AND NANOTECHNOLOGY: (AMSN 2010). AIP, 2012. http://dx.doi.org/10.1063/1.4732487.
Der volle Inhalt der QuelleLee, HeaYeon, und JuKyung Lee. „Advanced Biomimetic Nanodevice Using Nanotechnology Addressable Lipid Rafts Nanoarrays Toward Advanced Nanomaterials“. In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93286.
Der volle Inhalt der QuelleHan, Ke. „Characterization and Technology of Nanomaterials“. In 2016 4th International Conference on Advanced Materials and Information Technology Processing (AMITP 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/amitp-16.2016.9.
Der volle Inhalt der QuellePelayo García de Arquer, F., und Edward H. Sargent. „Solution-processed nanomaterials for advanced optoelectronic and energy applications“. In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/noma.2017.nom4c.1.
Der volle Inhalt der QuelleYin, Huajie, Hongjie Tang, Xiuxin Wang, Yan Gao und Zhiyong Tang. „Application of Nanomaterials and Nanostructures in Fuel Cells“. In Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asa4b.2.
Der volle Inhalt der QuelleFaraon, Victor A., Simona F. Pop, Raluca M. Senin, Sanda M. Doncea und Rodica M. Ion. „Porphyrin-zeolite nanomaterials for hydrogen peroxide decomposition“. In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies 2012, herausgegeben von Paul Schiopu und Razvan Tamas. SPIE, 2012. http://dx.doi.org/10.1117/12.966386.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Advanced nanomaterials"
Biris, Alexandru S., und Vladimir P. Zharov. Advanced Functional Nanomaterials for Biological Processes. Fort Belvoir, VA: Defense Technical Information Center, Januar 2014. http://dx.doi.org/10.21236/ada599898.
Der volle Inhalt der QuelleGrubbs, Robert H., und Andrew J. Boydston. Advanced Nanomaterials from Functional Cyclic Polymers. Fort Belvoir, VA: Defense Technical Information Center, Mai 2011. http://dx.doi.org/10.21236/ada546967.
Der volle Inhalt der QuelleChen, Junhong. Advanced Nanomaterials for High-Efficiency Solar Cells. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1108223.
Der volle Inhalt der QuelleKennedy, Alan, Jonathon Brame, Taylor Rycroft, Matthew Wood, Valerie Zemba, Charles Weiss, Matthew Hull, Cary Hill, Charles Geraci und Igor Linkov. A definition and categorization system for advanced materials : the foundation for risk-informed environmental health and safety testing. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41803.
Der volle Inhalt der QuelleHaber, Lynne, Anthony Bednar, Alan Kennedy, Mark Ballentine und Richard Canady. Methods evaluation for assessing release of manufactured nanomaterials from polymers, consistent with the NanoGRID framework : Advanced and Additive Materials : Sustainability for Army Acquisitions. Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33704.
Der volle Inhalt der Quelle