Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Adjoint discret“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Adjoint discret" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Adjoint discret"
Zhao, Shunliu, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell et al. „A multiphase CMAQ version 5.0 adjoint“. Geoscientific Model Development 13, Nr. 7 (02.07.2020): 2925–44. http://dx.doi.org/10.5194/gmd-13-2925-2020.
Der volle Inhalt der QuelleNi, Angxiu. „Backpropagation in hyperbolic chaos via adjoint shadowing“. Nonlinearity 37, Nr. 3 (30.01.2024): 035009. http://dx.doi.org/10.1088/1361-6544/ad1aed.
Der volle Inhalt der QuelleCapps, S. L., D. K. Henze, A. Hakami, A. G. Russell und A. Nenes. „ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA“. Atmospheric Chemistry and Physics Discussions 11, Nr. 8 (19.08.2011): 23469–511. http://dx.doi.org/10.5194/acpd-11-23469-2011.
Der volle Inhalt der QuelleHekmat, Mohamad Hamed, und Masoud Mirzaei. „Development of Discrete Adjoint Approach Based on the Lattice Boltzmann Method“. Advances in Mechanical Engineering 6 (01.01.2014): 230854. http://dx.doi.org/10.1155/2014/230854.
Der volle Inhalt der QuelleLarour, Eric, Jean Utke, Anton Bovin, Mathieu Morlighem und Gilberto Perez. „An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11“. Geoscientific Model Development 9, Nr. 11 (01.11.2016): 3907–18. http://dx.doi.org/10.5194/gmd-9-3907-2016.
Der volle Inhalt der QuelleWu, Hangkong, Xuanlong Da, Dingxi Wang und Xiuquan Huang. „Multi-Row Turbomachinery Aerodynamic Design Optimization by an Efficient and Accurate Discrete Adjoint Solver“. Aerospace 10, Nr. 2 (21.01.2023): 106. http://dx.doi.org/10.3390/aerospace10020106.
Der volle Inhalt der QuelleTowara, Markus, Michel Schanen und Uwe Naumann. „MPI-Parallel Discrete Adjoint OpenFOAM“. Procedia Computer Science 51 (2015): 19–28. http://dx.doi.org/10.1016/j.procs.2015.05.181.
Der volle Inhalt der QuelleNiwa, Yosuke, Hirofumi Tomita, Masaki Satoh, Ryoichi Imasu, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda et al. „A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 1: Offline forward and adjoint transport models“. Geoscientific Model Development 10, Nr. 3 (17.03.2017): 1157–74. http://dx.doi.org/10.5194/gmd-10-1157-2017.
Der volle Inhalt der QuelleAgarwal, Ravi P., Safi S. Rabie und Samir H. Saker. „On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes“. Fractal and Fractional 7, Nr. 3 (14.03.2023): 261. http://dx.doi.org/10.3390/fractalfract7030261.
Der volle Inhalt der QuelleCao, Junying, Zhongqing Wang und Ziqiang Wang. „A Uniform Accuracy High-Order Finite Difference and FEM for Optimal Problem Governed by Time-Fractional Diffusion Equation“. Fractal and Fractional 6, Nr. 9 (28.08.2022): 475. http://dx.doi.org/10.3390/fractalfract6090475.
Der volle Inhalt der QuelleDissertationen zum Thema "Adjoint discret"
Dittmann, Florian. „Study and Optimisation of Supersonic Ejectors for Heat Recovery Refrigeration Cycles“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLM029.
Der volle Inhalt der QuelleSupersonic ejectors for heat recovery refrigeration cycles are modelled, studied and optimised based on numerical fluid mechanics and the discrete adjoint method. The study is supported by an analysis of the relations between the complex flow phenomena, the thermodynamic limits and the cycle performance. A generalised 1D model is developed and used to conceive ejectors and predict their entrainment ratio in order to determine the optimal cycle conditions. The resolution of the Reynolds averaged Navier-Stokes equations complemented by the k-ω SST turbulence model and a cubic equation of state for the refrigerant R134a enables the flow analysis and shape optimisation. The latter relies on the discrete adjoint method to efficiently evaluate the gradient of the objective function with respect to an arbitrary number of design variables. It is shown that the method, applied here for the first time to a transonic flow of a refrigerant in an ejector, is capable of generating a well performing ejector shape from a failed design, despite the apparent discontinuity of the objective function at the critical point. The predicted efficiencies with the optimised shapes exceed those of the best ejectors on the market by around 15%
Marcelet, Meryem. „Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure“. Phd thesis, Paris, ENSAM, 2008. http://tel.archives-ouvertes.fr/tel-00367508.
Der volle Inhalt der QuelleMarcelet, Meryem. „Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure“. Phd thesis, Paris, ENSAM, 2008. http://www.theses.fr/2008ENAM0039.
Der volle Inhalt der QuelleThis work is mainly dedicated to the sensitivity analysis of a static aeroelastic system with respect to design parameters governing its jig-shape. First, a framework able to predict the static aeroelastic equilibrium has been set up. The fluid behavior can be governed either by the nonlinear Euler equations or by the Navier-Stokes Reynolds averaged (RANS) equations. They are numerically solved by an ONERA CFD solver: elsA. The structural behavior is governed by the Euler-Bernoulli equations within the context of beam theory. The aerodynamic loads are transferred to the structure using the matrix of the influence coefficients, also called the flexibility matrix. Only the bending and the twisting aerodynamic load components are consistently transmitted to the structure, and only the bending and the torsional displacements of the structure are calculated under the small displacement hypothesis. The deformation induced on the fluid domain mesh is analytically prescribed using an analogy to solid mechanics. Finally, the resulting coupled aeroelastic system of equations is solved by an iterative process inspired from the fixed-point algorithm. Second, a framework aiming at computing the gradients of the functions of interest (objective and constraints) with respect to a vector of shape parameters related to the jig-shape of the aeroelastic system previously depicted, has been raised. These gradients can be computed either by the discrete direct differentiation method or by the discrete adjoint vector method. In both cases, a coupled linear system of equations has to be solved, which is carried out using a doubly lagged iterative process. Finally, this framework has been applied to the computation of the gradients of the drag and lift aerodynamic coefficients with respect to different shape parameters for three aerodynamic configurations of growing complexity: Euler equations solved on a multiblock mesh with matching boundaries, RANS equations on a monoblock mesh, and, at last, RANS equations solved on a multiblock mesh with non-matching boundaries. The analytical gradients have been validated through the comparison with the finite difference gradients. A last part of this work has been dedicated to the evaluation of the performances of four surrogate models within the shape optimization of a bidimensional turbomachinery configuration
Mura, Gabriele Luigi. „Mesh sensitivity investigation in the discrete adjoint framework“. Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17384/.
Der volle Inhalt der QuelleRothauge, Kai. „The discrete adjoint method for high-order time-stepping methods“. Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/60285.
Der volle Inhalt der QuelleScience, Faculty of
Mathematics, Department of
Graduate
Schneider, Rene. „Applications of the discrete adjoint method in computational fluid dynamics“. Thesis, University of Leeds, 2006. http://etheses.whiterose.ac.uk/1343/.
Der volle Inhalt der QuelleWalther, Andrea. „Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1214221752009-12115.
Der volle Inhalt der QuelleWalther, Andrea. „Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications“. Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23715.
Der volle Inhalt der QuelleRoth, Rolf [Verfasser]. „Multilevel Optimization of Turbulent Flows by Discrete Adjoint Techniques / Rolf Roth“. München : Verlag Dr. Hut, 2012. http://d-nb.info/1025821424/34.
Der volle Inhalt der QuelleTowara, Markus [Verfasser], Uwe [Akademischer Betreuer] Naumann und Wolfgang [Akademischer Betreuer] Schröder. „Discrete adjoint optimization with OpenFOAM / Markus Towara ; Uwe Naumann, Wolfgang Schröder“. Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1187346942/34.
Der volle Inhalt der QuelleBücher zum Thema "Adjoint discret"
Edmunds, D. E., und W. D. Evans. Capacity and Compactness Criteria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0008.
Der volle Inhalt der QuelleBuchteile zum Thema "Adjoint discret"
Wong, M. W. „Self-Adjoint Operators“. In Discrete Fourier Analysis, 113–16. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0116-4_16.
Der volle Inhalt der QuelleLotz, Johannes, Uwe Naumann, Max Sagebaum und Michel Schanen. „Discrete Adjoints of PETSc through dco/c++ and Adjoint MPI“. In Euro-Par 2013 Parallel Processing, 497–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40047-6_51.
Der volle Inhalt der QuelleGiles, M. B. „Discrete Adjoint Approximations with Shocks“. In Hyperbolic Problems: Theory, Numerics, Applications, 185–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55711-8_16.
Der volle Inhalt der QuelleCatlin, Donald E. „Adjoints, Projections, Pseudoinverses“. In Estimation, Control, and the Discrete Kalman Filter, 92–113. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4528-5_4.
Der volle Inhalt der QuelleSchmüdgen, Konrad. „Discrete Spectra of Self-adjoint Operators“. In Graduate Texts in Mathematics, 265–80. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4753-1_12.
Der volle Inhalt der QuelleFichtner, Andreas. „The Frequency-Domain Discrete Adjoint Method“. In Full Seismic Waveform Modelling and Inversion, 189–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_10.
Der volle Inhalt der QuelleShu, Hanlin, Liangzhi Cao, Qingming He, Tao Dai, Zhangpeng Huang und Hongchun Wu. „Study on Unstructured-Mesh-Based Importance Sampling Method of Monte Carlo Simulation“. In Springer Proceedings in Physics, 431–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_38.
Der volle Inhalt der QuelleAnil, N., N. K. S. Rajan, Omesh Reshi und S. M. Deshpande. „A Low Dissipative Discrete Adjoint m-KFVS Method“. In Computational Fluid Dynamics 2008, 619–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_82.
Der volle Inhalt der QuelleTowara, Markus, Johannes Lotz und Uwe Naumann. „Discrete Adjoint Approaches for CHT Applications in OpenFOAM“. In Computational Methods in Applied Sciences, 163–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57422-2_11.
Der volle Inhalt der QuelleBrezillon, Joël, und Mohammad Abu-Zurayk. „Aerodynamic Inverse Design Framework Using Discrete Adjoint Method“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 489–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35680-3_58.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Adjoint discret"
Biava, Massimo, Mark Woodgate und George N. Barakos. „Fully Implicit Discrete Adjoint Methods“. In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1491.
Der volle Inhalt der QuelleFrey, Christian, Hans-Peter Kersken und Dirk Nu¨rnberger. „The Discrete Adjoint of a Turbomachinery RANS Solver“. In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59062.
Der volle Inhalt der QuelleSchäfer, Fellcitas, Luca Magri und Wolfgang Polifke. „A Hybrid Adjoint Network Model for Thermoacoustic Optimization“. In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59866.
Der volle Inhalt der QuelleMartins, Joaquim R. R. A., Charles Mader und Juan Alonso. „ADjoint: An Approach for Rapid Development of Discrete Adjoint Solvers“. In 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7121.
Der volle Inhalt der QuelleZhang, Chaolei, und Zhenping Feng. „Aerodynamic Shape Design Optimization for Turbomachinery Cascade Based on Discrete Adjoint Method“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45805.
Der volle Inhalt der QuelleMa, Can, Xinrong Su und Xin Yuan. „Discrete Adjoint Solution of Unsteady Turbulent Flow in Compressor“. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42948.
Der volle Inhalt der QuelleWalther, Benjamin, und Siva Nadarajah. „An Adjoint-Based Optimization Method for Constrained Aerodynamic Shape Design of Three-Dimensional Blades in Multi-Row Turbomachinery Configurations“. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26604.
Der volle Inhalt der QuelleWu, Hangkong, Shenren Xu, Xiuquan Huang und Dingxi Wang. „The Development and Verification of a Fully Turbulent Discrete Adjoint Solver Using Algorithmic Differentiation“. In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59610.
Der volle Inhalt der QuelleLu, Juan, Chaolei Zhang und Zhenping Feng. „Aerodynamic Optimization and Inverse Design of 2D and 3D Turbine Cascades Using the Discrete Adjoint Method“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95284.
Der volle Inhalt der QuelleChung, June, Jeonghwan Shim und Ki D. Lee. „Inverse Design of 3D Compressor Blades With Adjoint Method“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45419.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Adjoint discret"
Slater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5973682.
Der volle Inhalt der QuelleSlater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/10110196.
Der volle Inhalt der Quelle