Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „ADiCT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "ADiCT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "ADiCT"
Wu, Qing Yan, Ling Mi und Zun Wei Fu. „Boundedness ofp-Adic Hardy Operators and Their Commutators onp-Adic Central Morrey and BMO Spaces“. Journal of Function Spaces and Applications 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/359193.
Der volle Inhalt der QuelleKim, Min-Soo, Taekyun Kim und Jin-Woo Son. „On Multiple Twistedp-adicq-Eulerζ-Functions andl-Functions“. Abstract and Applied Analysis 2008 (2008): 1–14. http://dx.doi.org/10.1155/2008/793297.
Der volle Inhalt der QuelleJang, Lee-Chae. „A Newq-Analogue of Bernoulli Polynomials Associated withp-Adicq-Integrals“. Abstract and Applied Analysis 2008 (2008): 1–6. http://dx.doi.org/10.1155/2008/295307.
Der volle Inhalt der QuelleMok, Chung Pang. „The exceptional zero conjecture for Hilbert modular forms“. Compositio Mathematica 145, Nr. 1 (Januar 2009): 1–55. http://dx.doi.org/10.1112/s0010437x08003813.
Der volle Inhalt der QuelleYamagami, Atsushi, und Yūki Matsui. „On Some Formulas for Kaprekar Constants“. Symmetry 11, Nr. 7 (05.07.2019): 885. http://dx.doi.org/10.3390/sym11070885.
Der volle Inhalt der QuelleKim, Daeyeoul, und Min-Soo Kim. „Symmetry Fermionic -Adic -Integral on for Eulerian Polynomials“. International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/424189.
Der volle Inhalt der QuelleGreenberg, Ralph, und Glenn Stevens. „p-adicL-functions andp-adic periods of modular forms“. Inventiones Mathematicae 111, Nr. 1 (Dezember 1993): 407–47. http://dx.doi.org/10.1007/bf01231294.
Der volle Inhalt der QuelleTeitelbaum, Jeremy T. „Values ofp-adicL-functions and ap-adic Poisson kernel“. Inventiones Mathematicae 101, Nr. 1 (Dezember 1990): 395–410. http://dx.doi.org/10.1007/bf01231508.
Der volle Inhalt der QuelleColeman, Robert, und Ehud de Shalit. „p-Adic regulators on curves and special values ofp-adicL-functions“. Inventiones mathematicae 93, Nr. 2 (Juni 1988): 239–66. http://dx.doi.org/10.1007/bf01394332.
Der volle Inhalt der QuelleVerma, Ashish. „Depression among Indian Internet Addict Adolescents“. Indian Journal of Youth & Adolescent Health 06, Nr. 04 (24.06.2020): 12–18. http://dx.doi.org/10.24321/2349.2880.201917.
Der volle Inhalt der QuelleDissertationen zum Thema "ADiCT"
Verdasca, Carla Sofia Marques. „Crenças, atitudes e comportamentos de saúde e de risco de adictos em comunidades terapêuticas“. Master's thesis, Universidade de Évora, 2010. http://hdl.handle.net/10174/19060.
Der volle Inhalt der QuelleVenjakob, Otmar. „Iwasawa theory of r-adic [rho-adic] Lie extensions“. [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961907630.
Der volle Inhalt der QuelleFurusho, Hidekazu. „ρ-adic multiple zeta values 1 : ρ-adic multiple polylogarithms and the ρ-adic KZ equation“. 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/148595.
Der volle Inhalt der QuelleBrown, Bryan. „Addicted to the Addict: Hollywood's Sinuous Relationship With the Drug-Addict in the 1970s“. OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/906.
Der volle Inhalt der QuelleAmbrosi, Emiliano. „l-adic,p-adic and geometric invariants in families of varieties“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX019/document.
Der volle Inhalt der QuelleThis thesis is divided in 8 chapters. Chapter ref{chapterpreliminaries} is of preliminary nature: we recall the tools that we will use in the rest of the thesis and some previously known results. Chapter ref{chapterpresentation} is devoted to summarize in a uniform way the new results obtained in this thesis.The other six chapters are original. In Chapters ref{chapterUOIp} and ref{chapterneron}, we prove the following: given a smooth proper morphism $f:Yrightarrow X$ over a smooth geometrically connected base $X$ over an infinite finitely generated field of positive characteristic, there are lots of closed points $xin |X|$ such that the rank of the N'eron-Severi group of the geometric fibre of $f$ at $x$ is the same of the rank of the N'eron-Severi group of the geometric generic fibre. To prove this, we first study the specialization of the $ell$-adic lisse sheaf $R^2f_*Ql(1)$ ($ellneq p$), then we relate it with the specialization of the F-isocrystal $R^2f_{*,crys}mathcal O_{Y/K}(1)$ passing trough the category of overconvergent F-isocrystals. Then, the variational Tate conjecture in crystalline cohomology, allows us to deduce the result on the N'eron-Severi groups from the results on $R^2f_{*,crys}mathcal O_{Y/K}(1)$. These extend to positive characteristic results of Cadoret-Tamagawa and Andr'e in characteristic zero.Chapters ref{chaptermarcuzzo} and ref{chapterpadic} are devoted to the study of the monodromy groups of (over)convergent F-isocrystals. Chapter ref{chaptermarcuzzo} is a joint work with Marco D'Addezio. We study the maximal tori in the monodromy groups of (over)convergent F-isocrystals and using them we prove a special case of a conjecture of Kedlaya on homomorphism of convergent $F$-isocrystals. Using this special case, we prove that if $A$ is an abelian variety without isotrivial geometric isogeny factors over a function field $F$ over $overline{F}_p$, then the group $A(F^{mathrm{perf}})_{tors}$ is finite. This may be regarded as an extension of the Lang--N'eron theorem and answer positively to a question of Esnault. In Chapter ref{chapterpadic}, we define $overline Q_p$-linear category of (over)convergent F-isocrystals and the monodromy groups of their objects. Using the theory of companion for overconvergent F-isocrystals and lisse sheaves, we study the specialization theory of these monodromy groups, transferring the result of Chapter ref{chapterUOIp} to this setting via the theory of companions.The last two chapters are devoted to complements and refinement of the results in the previous chapters. In Chapter ref{chaptertate}, we show that the Tate conjecture for divisors over finitely generated fields of characteristic $p>0$ follows from the Tate conjecture for divisors over finite fields of characteristic $p>0$. In Chapter ref{chapterbrauer}, we prove uniform boundedness results for the Brauer groups of forms of varieties in positive characteristic, satisfying the $ell$-adic Tate conjecture for divisors. This extends to positive characteristic a result of Orr-Skorobogatov in characteristic zero
Ludwig, Judith. „p-adic Langlands functoriality“. Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25095.
Der volle Inhalt der QuelleScanlon, M. G. T. „ƿ-adic Fourier analysis“. Thesis, Durham University, 2003. http://etheses.dur.ac.uk/3712/.
Der volle Inhalt der QuelleEis, Pavel. „Datová sada pro klasifikaci síťových zařízení pomocí strojového učení“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445543.
Der volle Inhalt der QuelleWald, Christian. „A p-adic quantum group and the quantized p-adic upper half plane“. Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18201.
Der volle Inhalt der QuelleA quantum group is a noncommutative noncocommutative Hopf algebra. In this thesis we deform the locally convex Hopf algebra of locally analytic functions on GL(2,O), where O is the valuation ring of a finite extension of the p-adic numbers. We show that this deformation is a noncommutative noncocommutative locally convex Hopf algebra, i.e. a p-adic quantum group. Our main result is that the strong dual of our deformation is a Fréchet Stein algebra, i.e. a projective limit of Noetherian Banach algebras with right flat transition maps. This was shown in the commutative case by P. Schneider and J. Teitelbaum. For our proof in the noncommutative case we use ideas of M. Emerton, who gave an alternative proof of the Fréchet Stein property in the commutative case. For the proof we describe completions of the quantum enveloping algebra and use partial divided powers. An important class of locally analytic representations of GL(2,K) is constructed from global sections of line bundles on the p-adic upper half plane. We construct a noncommutative analogue of an affine version of the p-adic upper half plane which we expect to give rise to interesting representations of our p-adic quantum group. We construct this space by using the Manin quantum plane, the Bruhat-Tits tree for PGL(2,K) and the theory of algebraic microlocalization.
Newton, James. „Levels of p-adic automorphic forms and a p-adic Jacquet-Langlands correspondence“. Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7032.
Der volle Inhalt der QuelleBücher zum Thema "ADiCT"
Stein, Michael. The Addict. New York: HarperCollins, 2009.
Den vollen Inhalt der Quelle findenBaldó, Blanca. Adicta al miedo. Caracas: Fundarte, Alcaldía de Caracas, 1991.
Den vollen Inhalt der Quelle findenPerrin-Riou, Bernadette. p-adic L-functions and p-adic representations. Providence, RI: American Mathematical Society, 2000.
Den vollen Inhalt der Quelle findenThe joy addict: Poems. Pittsburgh: Carnegie Mellon University Press, 1998.
Den vollen Inhalt der Quelle findenBeaton, M. C. Death of an Addict. New York: Grand Central Publishing, 2001.
Den vollen Inhalt der Quelle findenHarms, James. The joy addict: Poems. Pittsburgh: Carnegie Mellon University Press, 1998.
Den vollen Inhalt der Quelle findenBeaton, M. C. Death of an addict. New York: Time Warner, 2001.
Den vollen Inhalt der Quelle findenMind of an addict. Portsmouth, N.H: P.E. Randall Publisher, 1993.
Den vollen Inhalt der Quelle findenBeaton, M. C. Death of an addict. Waterville, Me: Thorndike Press, 2005.
Den vollen Inhalt der Quelle findenBeaton, M. C. Death of an addict. New York: The Mysterious Press, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "ADiCT"
Sajadi, Behzad, Maxim Lazarov und Aditi Majumder. „ADICT: Accurate Direct and Inverse Color Transformation“. In Computer Vision – ECCV 2010, 72–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15561-1_6.
Der volle Inhalt der QuelleEpstein, Orit Badouk. „“Suicide Addict”“. In Shame Matters, 148–68. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003175612-10.
Der volle Inhalt der QuelleHuber, Roland. „Adic spaces“. In Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, 36–107. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09991-8_2.
Der volle Inhalt der QuellePowell, Elliott H. „Addict(ive) Sex“. In Popular Music and the Politics of Hope, 173–86. New York : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781315165677-12.
Der volle Inhalt der QuelleKhrennikov, Andrei Yu, und Marcus Nilson. „P-Adic Numbers and P-Adic Analysis“. In P-adic Deterministic and Random Dynamics, 5–29. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2660-7_2.
Der volle Inhalt der QuelleGouvêa, Fernando Q. „p-adic Numbers“. In Universitext, 41–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-22278-2_4.
Der volle Inhalt der QuelleMurty, M. Ram. „p-adic Methods“. In Problems in Analytic Number Theory, 147–70. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_10.
Der volle Inhalt der QuelleMurty, M. Ram. „p-adic Methods“. In Problems in Analytic Number Theory, 423–46. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_20.
Der volle Inhalt der QuelleLang, Serge. „p-adic Preliminaries“. In Graduate Texts in Mathematics, 314–28. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-0987-4_14.
Der volle Inhalt der QuelleSerovajsky, Simon. „p-adic numbers“. In Sequential Models of Mathematical Physics, 129–53. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429470417-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "ADiCT"
Vines, Paul, Franziska Roesner und Tadayoshi Kohno. „Exploring ADINT“. In CCS '17: 2017 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3139550.3139567.
Der volle Inhalt der Quelle„ADiT“. In 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/mixdes.2007.4286259.
Der volle Inhalt der QuelleJUYUMAYA, Jesus, und Sofia LAMBROPOULOU. „p-ADIC FRAMED BRAIDS AND p-ADIC MARKOV TRACES“. In Intelligence of Low Dimensional Topology 2006 - The International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770967_0010.
Der volle Inhalt der QuelleSCHOLZE, PETER. „p-ADIC GEOMETRY“. In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0032.
Der volle Inhalt der QuelleHartatik, Firdaus Yuni, und Nixie Devina Rahmadiani. „Self-Forgiveness in Former Drug Addict (A Case Study on Former Methamphetamine Addict)“. In Proceedings of the 4th ASEAN Conference on Psychology, Counselling, and Humanities (ACPCH 2018). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/acpch-18.2019.38.
Der volle Inhalt der QuelleAndré, Yves. „Toward p-adic Stokes phenomena? Singularities of p-adic differential equations“. In The Conference on Differential Equations and the Stokes Phenomenon. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776549_0001.
Der volle Inhalt der QuelleDumas, Jean-Guillaume. „Q-adic transform revisited“. In the twenty-first international symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390768.1390780.
Der volle Inhalt der QuelleDolzmann, Andreas, und Thomas Sturm. „P-adic constraint solving“. In the 1999 international symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/309831.309894.
Der volle Inhalt der QuelleGhosh, Somnath, Vahdat Khashayar und Brandy McKelvy. „Polarized Treasures Of The Drug Addict“. In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a2938.
Der volle Inhalt der QuelleChao Lu, Xinkai Li und Luxi Shan. „Periodicity of the P-adic Expansion after Arithmetic Operations in P-adic Field“. In 2012 IEEE/ACIS 11th International Conference on Computer and Information Science (ICIS). IEEE, 2012. http://dx.doi.org/10.1109/icis.2012.85.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "ADiCT"
Marshak, Ronni. Confessions of a Groupon Addict. Boston, MA: Patricia Seybold Group, Oktober 2010. http://dx.doi.org/10.1571/psgp11-04-10cc.
Der volle Inhalt der QuelleHovland, P. D., und B. Norris. Users' Guide to ADIC 1.1. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/834712.
Der volle Inhalt der QuelleVolkow, N. D., und J. S. Fowler. Brain imaging studies of the cocaine addict: Implications for reinforcement and addiction. Office of Scientific and Technical Information (OSTI), Juli 1995. http://dx.doi.org/10.2172/93949.
Der volle Inhalt der QuelleDAI, YANG, ALEXEY B. BORISOV, KEITH BOYER und CHARLES K. RHODES. A p-Adic Metric for Particle Mass Scale Organization with Genetic Divisors. Office of Scientific and Technical Information (OSTI), Dezember 2001. http://dx.doi.org/10.2172/791885.
Der volle Inhalt der QuelleWu, Po-Ting, C. H. Bischof und P. D. Hovland. Using ADIFOR and ADIC to provide Jacobians for the SNES component of PETSc. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/567514.
Der volle Inhalt der QuelleDesbarats, A. J., M. B. Parsons, J. B. Percival, Y. T. J. Kwong und S. Beauchemin. Characterization of the flow and chemistry of Adit Drainage, Bralorne Mine, Bralorne, B.C. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2010. http://dx.doi.org/10.4095/261502.
Der volle Inhalt der QuelleLu, Chao. A Computational Library Using P-adic Arithmetic for Exact Computation With Rational Numbers in Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada456488.
Der volle Inhalt der QuelleLu, Chao. Algorithms and Implementation for P-adic Cyclic Codes Using Exact Arithmetic Library Developed for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, Januar 2007. http://dx.doi.org/10.21236/ada473068.
Der volle Inhalt der QuelleLu, Chao. Extension of P-adic Exact Scientific Computational Library (ESCL) to Compute the Exponential of Rational Matrix. Fort Belvoir, VA: Defense Technical Information Center, Februar 2008. http://dx.doi.org/10.21236/ada478962.
Der volle Inhalt der Quelle