Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Adenine nucleotides Receptors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Adenine nucleotides Receptors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Adenine nucleotides Receptors"
Stone, Trevor W. „Receptors for adenosine and adenine nucleotides“. General Pharmacology: The Vascular System 22, Nr. 1 (Januar 1991): 25–31. http://dx.doi.org/10.1016/0306-3623(91)90305-p.
Der volle Inhalt der QuelleNewman, George C., Frank E. Hospod, Sean D. Trowbridge, Shilpa Motwani und Yan Liu. „Restoring Adenine Nucleotides in a Brain Slice Model of Cerebral Reperfusion“. Journal of Cerebral Blood Flow & Metabolism 18, Nr. 6 (Juni 1998): 675–85. http://dx.doi.org/10.1097/00004647-199806000-00010.
Der volle Inhalt der QuelleGorman, Mark W., Kayoko Ogimoto, Margaret V. Savage, Kenneth A. Jacobson und Eric O. Feigl. „Nucleotide coronary vasodilation in guinea pig hearts“. American Journal of Physiology-Heart and Circulatory Physiology 285, Nr. 3 (September 2003): H1040—H1047. http://dx.doi.org/10.1152/ajpheart.00981.2002.
Der volle Inhalt der QuelleMurugappan, Swaminathan, Haripriya Shankar und Satya P. Kunapuli. „Platelet Receptors for Adenine Nucleotides and Thromboxane A2“. Seminars in Thrombosis and Hemostasis 30, Nr. 4 (August 2004): 411–18. http://dx.doi.org/10.1055/s-2004-833476.
Der volle Inhalt der QuelleEltzschig, Holger K., Linda F. Thompson, Jorn Karhausen, Richard J. Cotta, Juan C. Ibla, Simon C. Robson und Sean P. Colgan. „Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism“. Blood 104, Nr. 13 (15.12.2004): 3986–92. http://dx.doi.org/10.1182/blood-2004-06-2066.
Der volle Inhalt der QuelleWilliams, Wynford R. „Dampening of neurotransmitter action: molecular similarity within the melatonin structure“. Endocrine Regulations 52, Nr. 4 (01.10.2018): 199–207. http://dx.doi.org/10.2478/enr-2018-0025.
Der volle Inhalt der QuelleAntos, Laura K., und Lincoln R. Potter. „Adenine nucleotides decrease the apparentKmof endogenous natriuretic peptide receptors for GTP“. American Journal of Physiology-Endocrinology and Metabolism 293, Nr. 6 (Dezember 2007): E1756—E1763. http://dx.doi.org/10.1152/ajpendo.00321.2007.
Der volle Inhalt der QuelleKawa, Kazuyoshi. „Discrete but simultaneous release of adenine nucleotides and serotonin from mouse megakaryocytes as detected with patch- and carbon-fiber electrodes“. American Journal of Physiology-Cell Physiology 286, Nr. 1 (Januar 2004): C119—C128. http://dx.doi.org/10.1152/ajpcell.00014.2003.
Der volle Inhalt der QuellePuchałowicz, Kamila, Maciej Tarnowski, Marta Tkacz, Dariusz Chlubek, Patrycja Kłos und Violetta Dziedziejko. „Extracellular Adenine Nucleotides and Adenosine Modulate the Growth and Survival of THP-1 Leukemia Cells“. International Journal of Molecular Sciences 21, Nr. 12 (22.06.2020): 4425. http://dx.doi.org/10.3390/ijms21124425.
Der volle Inhalt der QuelleCattaneo, M. „The platelet P2 receptors in inflammation“. Hämostaseologie 35, Nr. 03 (2015): 262–66. http://dx.doi.org/10.5482/hamo-14-09-0044.
Der volle Inhalt der QuelleDissertationen zum Thema "Adenine nucleotides Receptors"
Crisp, Michael G. „Organoplatinum(II) complexes with hydrogen-bonding functionality and their potential use as molecular receptors for adenine : a thesis submitted for the degree of Master of Science“. Title page, abstract and contents only, 2002. http://web4.library.adelaide.edu.au/theses/09SM/09smc932.pdf.
Der volle Inhalt der QuelleGaboardi, Angela Kampfer. „Regulation of the cardiac isoform of the ryanodine receptor by S-adenosyl-l-methionine“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42854.
Der volle Inhalt der QuelleChan, Wei Mun. „Adenine nucleotide activation of the cardiac ryanodine receptor“. Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396214.
Der volle Inhalt der QuelleLandon, Linda A. Neighbors. „Salivary gland P2 nucleotide receptors : structure and function studies /“. free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9904855.
Der volle Inhalt der QuelleKong, Qiongman. „Regulations and functions of P2Y₂ and P2X₇ nucleotide receptors in the central nervous system“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4847.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 19, 2009) Vita. Includes bibliographical references.
Tikh, Eugene I. „Regulation of Contractility by Adenosine A1 and A2A Receptors in the Murine Heart: Role of Protein Phosphatase 2A: A Dissertation“. eScholarship@UMMS, 2006. https://escholarship.umassmed.edu/gsbs_diss/130.
Der volle Inhalt der QuellePursell, Natalie W. „Hsp90-Mediated Maturation of Kinases and Nuclear Steroid Hormone Receptors: A Dissertation“. eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/535.
Der volle Inhalt der QuelleFeliu, Catherine. „Implication des récepteurs P1 et P2 dans la protection des cellules endothéliales au cours de l’hypoxie-reoxygenation Complementary Role of P2 and adenosine receptors in ATP induced-anti-apoptotic effects against hypoxic injury of HUVECs Current knowledge on the role of P2Y receptors in cardioprotection against ischemia-reperfusion Intra-extracellular quantification of nucleotides and adenosine using UHPLCHRMS: improvement of robustness by the use of ascorbic acid in mobile phase Description of the novel cytoprotective action pathways of ticagrelor against hypoxic lesions at the endothelium“. Thesis, Reims, 2019. http://www.theses.fr/2019REIMM202.
Der volle Inhalt der QuelleDuring cardiac ischemia, the lesion is triggered in the endothelium and progresses to the surrounding cardiomyocytes. Purinergic signalling plays an important role during ischemia/reperfusion (I/R) events. Many studies have been carried out to study the mechanisms of protection of nucleotides and nucleosides, without studying their specific roles on the endothelium. In this work, we report an increase in extracellular concentrations of ATP and adenosine from the endothelium exposed to hypoxia. We report a protective effect of extracellular ATP and a complementary role of the P2 and P1 receptors. P2 receptors protective effects involve the PI3K, ERK1/2, mKATP channel signalling and also involve NOS. The protection mediated by the P1 receptors involves the MEK/ERK1/2, PKA and NOS. In a second step, we describe a new cytoprotective mechanism of ticagrelor, independent of the blood element and its antiplatelet anti-aggregating effect. This mechanism is initiated by the increased of extracellular adenosine bioavailability, which triggers protective effects via its A3 and A2A receptors. This may explain, in part, the reported cardioprotective effects of the ticagrelor in clinical studies. Together, our data support the protective role of ATP and adenosine against deleterious effects ofendothelium hypoxia and suggest a beneficial role for these mediators in different ischemia, including cardiac, renal or cerebral ischemia
Pereira, Maria Margarida Ribeirinho. „The role of hypoxia driven adenosinergic pathway in the malignant features of bladder cancer cells“. Master's thesis, 2020. http://hdl.handle.net/10316/93875.
Der volle Inhalt der QuelleIntrodução: A hipóxia é uma característica comum dos tumores sólidos e desempenha um papel crítico nas neoplasias malignas, incluindo o cancro da bexiga (CB). O factor induzível por hipóxia-1α (HIF-1α) desempenha um papel importante na regulação da resposta das células tumorais sujeitas ao stress hipóxico que resulta em alterações metabólicas e na ativação de mecanismos de sobrevivência. As células hipóxicas sobreexpressam as ecto-nucleotidases CD39 e CD73 que estão envolvidas na geração de adenosina extracelular. Este nucleosídeo atua como um importante regulador de processos inflamatórios em condições fisiológicas mas no cancro, inibe o sistema imunitário permitindo que as células cancerígenas escapem ao controlo do sistema imunitário. Além disso, existem evidências que associam a ativação da via adenosinérgica em resposta à hipóxia com a agressividade tumoral. No entanto, os mecanismos que estão subjacentes a este processo não estão completamente clarificados.Objetivo: Explorar o papel patofisiológico da via adenosinérgica mediada por hipóxia nas características malignas do CB e avaliar a contribuição do HIF-1α e da adenosina nesses processos biológicos.Métodos: Duas linhas celulares humanas de CB, UM-UC3 e HT-1376, foram expostas a hipóxia usando um sistema anaeróbio GasPakTM EZ na ausência e na presença do inibidor do HIF-1α (Digoxina). A expressão do HIF-1α, CD39, CD73, dos receptores de adenosina A2A e A2B e do PD-L1 foi avaliada por Western blot. Os níveis extracelulares de adenosina no sobrenadante foram medidos usando um kit comercial de medição de adenosina. A proliferação celular e a quimiossensibilidade à cisplatina foram avaliadas pelo ensaio de WST-1. A migração celular foi determinada pelo ensaio de scratch. Os marcadores de superfície e os fatores de transcrição da transição epitelial-mesenquimal foram analisados por qPCR. Estas experiências foram realizadas em condições de normóxia na presença de adenosina.Resultados: Ambas as linhas celulares em condições de hipóxia estabilizaram o HIF-1α e ativaram a via adenosinérgica como demonstrado pela sobreexpressão das ecto-nucleotidases CD39 e CD73, produção de adenosina extracelular e sobreexpressão do receptor A2B. A hipóxia diminuiu a susceptibilidade das células de CB à cisplatina e aumentou a expressão do PD-L1, antecipando o desenvolvimento de mecanismos de evasão do sistema imunológico. A hipóxia induziu a transição epitelial-mesenquimal em ambas as linhas celulares e aumentou a capacidade de migração das células HT-1376, mas não das UM-UC3. O tratamento com adenosina exacerbou as características malignas das células de CB, semelhante às induzidas pelas condições de hipóxia. A Digoxina atenuou a expressão de HIF-1α nas células de CB em condições de hipóxia sem contudo prevenir a produção de adenosina extracelular e os seus efeitos pro-tumorais.Conclusão: A hipóxia ativou a via adenosinérgica nas células de CB e promoveu a agressividade tumoral ao interferir com a proliferação celular, quimiorresistência e capacidade de invasão. A adenosina desempenha um papel importante no efeito pro-tumoral da hipóxia. Assim sendo, estratégias terapêuticas incorporando inibidores da via hipóxia-CD39-CD73-A2BR podem ser benéficos no controlo da progressão tumoral e na resposta à terapia.
Introduction: Hypoxia is a common feature of solid tumors and a critical hallmark of malignant disease, including bladder cancer (BC). The hypoxia-inducible factor-1α (HIF-1α) is a crucial regulator of cancer cells response to hypoxia stress and results in metabolic changes and activation of survival mechanisms. Hypoxic cells upregulate the ecto-nucleotidases CD39 and CD73 that are involved in the generation of extracellular adenosine. This nucleoside in physiological conditions acts as an important regulator of inflammatory processes but in cancer, dampen the immune system allowing cancer cells to escape the immune control. Moreover, accumulating evidences suggest a link between the adenosinergic response to hypoxia and tumor aggressiveness. However, the mechanisms behind this process are not completely clarified.Objectives: To explore the pathophysiological role of the hypoxia-driven adenosinergic pathway on the malignant features of BC and to unravel the contribution of HIF-1α and of adenosine in those biological processes.Methods: Two human BC cell lines, UM-UC3 and HT-1376, were exposed to hypoxia using the GasPak ez anaerobe system in the absence and in the presence of a HIF-1α inhibitor (Digoxin). The expression of HIF-1α, CD39, CD73, adenosine receptors A2A and A2B and of PD-L1 were measured by Western blot. Extracellular levels of adenosine in supernatants were measured using an adenosine assay kit. Cell proliferation and chemosensitivity to cisplatin were evaluated using the WST-1 assay. Cell migration was assessed via a wound-healing assay. Epithelial-to-mesenchymal transition surface markers and transcription factors were detected by qPCR. A parallel set of experiments were conducted under normoxic conditions in the presence of adenosine.Results: Both cell lines under hypoxic conditions stabilized HIF-1α and activated the adenosinergic pathway as shown by the upregulation of CD39, CD73 and extracellular generation of adenosine, accompanied by an upregulation of the A2B receptor. Hypoxia impaired the susceptibility of BC cells to cisplatin and upregulates the expression of PD-L1, anticipating the development of an immune escape mechanism. Hypoxic stress induced epithelial-to-mesenchymal transition in both cell lines and increased the migratory rate of HT-1376 cells, but not of UM-UC3 cells. Treatment with adenosine exacerbated the malignant features of BC cells in a fashion similar to those induced by hypoxic conditions. Digoxin attenuated the protein expression of HIF-1α in BC cells under hypoxic conditions without preventing the extracellular production of adenosine and its pro-tumoral effects.Conclusion: Hypoxia activated the adenosinergic pathway in BC cells and promoted tumor aggressiveness by interfering with cell proliferation, chemoresistance and invasiveness. Adenosine has a high contribution to the tumor-promoting effects of hypoxia. Therefore, therapeutic strategies incorporating inhibitors of the hypoxia-CD39-CD73-A2BR pathway might be beneficial in controlling tumor growth and response to therapy.
Outro - This work was funded by National Funds via FCT (Foundation for Science and Technology) through the Strategic Project UIDB/04539/2020 and UIDP/04539/2020 (CIBB)
Silva, Tiago Soares. „Interaction between ecto-5’-nucleotidase and adenosine A2A receptors in nerve terminals of mice prefrontal cortex“. Master's thesis, 2013. http://hdl.handle.net/10316/24725.
Der volle Inhalt der QuelleA ativação dos recetores de adenosina A2A (A2AR) é feita através da adenosina que pode ser produzida através do catabolismo do ATP libertado no meio extracelular. A ecto-5’-nucleotidase (e-5’N) desempenha um papel importante na formação de adenosina proveniente do catabolismo do ATP, e subsequentemente na ativação dos A2AR controlando assim a plasticidade sináptica. Após uma lesão cerebral, o ATP é libertado como um sinal aversivo provocando o aumento em simultâneo da atividade da e-5’N e da densidade dos A2AR. Isto levanta a hipótese de que a e-5’N e os A2AR podem encontrar-se co-localizados e poderá haver uma interação funcional entre eles. Este estudo tem como objetivos definir: i) a localização sináptica e sub-sináptica (regiões pré-, pós- e extra-sinápticas) da e-5’N focando principalmente no córtex pré-frontal (PFC) de ratinhos C57Bl/6 adultos, ii) a co-localização da e-5’N com os A2AR em fatias do PFC e em terminais nervosos corticais, iii) se a deleção genética dos A2AR afeta a densidade sináptica da e-5’N em regiões corticais, iv) a função da e-5’N na plasticidade sináptica do PFC, e por fim, v) se o envelhecimento afeta a densidade sináptica da e-5’N em regiões do PFC. A comparação por análise de Western blot da densidade da e-5’N em membranas totais e sinaptossomas do córtex pré-frontal revelou que a e-5’N se encontrava nos terminais nervosos (52.1 2.3%, n=4), mas não se encontrava tão enriquecida como nas membranas totais (72.5 3.1%, n=4). O fracionamento dos sinaptossomas do córtex pré-frontal mostrou a presença de duas isoformas diferentes da e-5’N, estando uma mais presente nas frações pré-sináptica e extra-sináptica (~50 kDa) e outra presente (~70 kDa) na fração pós-sináptica. Através de imunohistoquímica foi possível verificar uma aparente co-localização entre a e-5’N e os A2AR, estando mais presentes em neurónios e microglia, mas não com astrócitos. O “pull-down” dos A2AR em terminais nervosos do córtex pré-frontal revelou uma associação física entre os A2AR e a e-5’-N. A delecção genética dos A2AR não afetou significativamente os níveis de e-5’-N, no entanto verificou-se um ligeiro aumento nos níveis desta enzima. Estudos de eletrofisiologia em fatias de córtex pré-frontal incubadas com um antagonista seletivo dos A2AR (SCH 58261) demonstraram que a ativação dos A2AR era necessária para obter potenciação de longa duração (LTP); porém quando a e-5’N era inibida (com AOPCP), prevenindo a formação de adenosina, a transmissão sináptica basal sofria um efeito inibitório mas não se observaram diferenças significativas no fenómeno da LTP, desencadeado por 5 “trains” de estímulos de 300 Hz. Também foram avaliados através de HPLC os níveis basais de AMP e adenosina em sinaptossomas de córtex pré-frontal, e como esperado observou-se níveis aumentados de AMP na presença de AOPCP, uma vez que este nucleósido não estava a ser convertido em adenosina, no entanto os níveis de adenosina não se encontravam alterados significativamente; o que sugere que a contribuição da e-5’N para a formação de adenosina nos terminais nervosos do PFC não é significativa. Finalmente, analisou-se se a densidade sináptica da e-5’N era afetada pelo envelhecimento, para tal comparámos por imunoblot a densidade desta enzima em ratinhos jovens adultos (8-12 semanas de idade) e em ratinhos adultos (36-40 semanas de idade); porém, não se observaram diferenças significativas entre estes dois grupos de animais. Embora este trabalho tenha algumas questões que precisam de ser detalhadas com mais rigor, os resultados contribuem com novos dados sobre a relação entre a e-5’N e os A2AR no PFC, e poderão ser úteis para resolver questões relacionadas com disfunções do lobo frontal do cérebro.
The activation of adenosine A2A receptors (A2AR) is mediated by adenosine that can be originated from the extracellular catabolism of released ATP. Ecto-5’-nucleotidase (e-5’N) plays a key role in the formation of ATP-derived adenosine and in the subsequent activation of A2AR to control synaptic plasticity. Upon brain injury, ATP is released as a stress signal and both e-5’N and A2AR are up-regulated in parallel. This prompts the hypothesis that e-5’N and A2AR could be co-localized and co-regulated. The present study aims to define: i) the synaptic and sub-synaptic (pre-, post- and extra-synaptic regions) localization of e-5’N focusing in the prefrontal cortex (PFC) of adult C57Bl/6 mice, ii) the co-localization of e-5’N with A2AR in slices from the PFC and in cortical nerve terminals, iii) if the genetic deletion of A2AR affects the density of synaptic e-5’N in cortical regions, iv) the function of e-5’N in synaptic plasticity in the PFC, and finally v) if aging affects the density of synaptic e-5’N in PFC regions. The comparison by Western blot analysis of the density of e-5’N in prefrontal cortex total membranes and synaptosomes revealed that e-5’N, was present in nerve terminals (52.1 2.3%, n=4), but was not as enriched as in the bulk of total membranes (72.5 3.1%, n=4). The fractionation of prefrontal cortex synaptosomes unveiled the presence of two different isoforms of e-5’N, one being more present at the pre-synaptic and extra-synaptic fractions (~50 kDa) and the other (~70 kDa) at the post-synaptic fraction. By immunohistochemistry it was possible to observe an apparent co-localization of e-5’N with A2AR, mainly associated with neurons and microglia but not with astrocytes. The pull-down of A2AR revealed a physical association of A2AR with e-5’-N in nerve terminals from the prefrontal cortex. The genetic deletion of A2AR did not affect significantly the levels of e-5’-N, although it was found a slight increase in the levels of this enzyme. Electrophysiological studies in prefrontal cortex slices incubated with a selective antagonist of A2AR (SCH 58261) demonstrated that the activation of A2AR was necessary to obtain long term potentiation (LTP); however when e-5’N was blocked (with AOPCP), and consequently the adenosine formation was prevented, the basal synaptic transmission suffered an inhibitory effect but there were no significant changes in the LTP phenomenon, triggered by 5 trains of 300 Hz stimuli. We also evaluated by HPLC measurements the basal levels of AMP and adenosine in synaptosomes from the PFC and as expected it was observed that in the presence of AOPCP, the levels of AMP were increased, since this nucleoside was not converted into adenosine, nevertheless the levels of adenosine did not change significantly; suggesting that the contribution of e-5’N to adenosine formation in nerve terminals of PFC was not substantial. Finally we analysed whether the synaptic density of e-5’N was affected by the aging, thus we compared by immunoblot the density of this enzyme in young adult (8-12 weeks old) and in adult mice (36-40 weeks old); nevertheless, no significant differences were observed between these two groups of animals Although this work have some question that need to be more deeply investigated, the results give new insights about the relation between e-5’N and A2AR in the PFC, and could be useful to tackle questions regarding frontal lobe brain dysfunctions.
Bücher zum Thema "Adenine nucleotides Receptors"
Pharmacology of purine and pyrimidine receptors. San Diego, CA: Elsevier, 2011.
Den vollen Inhalt der Quelle finden1931-, Imai Shōichi, Nakazawa Mikio und International Symposium on Adenosine and Adenine Nucleotides (4th : 1990 : Yamanaka Lake, Japan), Hrsg. Role of adenosine and adenine nucleotides in the biological system: Metabolism, release, transport, receptors, transduction mechanisms and biological actions : proceedings of the 4th international symposium on adenosine and adenine nucleotides, Lake Yamanaka, Japan, 13-17 May, 1990. Amsterdam: Elsevier, 1991.
Den vollen Inhalt der Quelle finden1953-, Jacobson Kenneth Alan, und Jarvis Michael F, Hrsg. Purinergic approaches in experimental therapeutics. New York: Wiley-Liss, 1997.
Den vollen Inhalt der Quelle findenImai, Shoichi. Role of Adenosine and Adenine Nucleotides in the Biological System: Metabolism, Release, Transport, Receptors, Transduction Mechanisms and Biologica. Elsevier Science Ltd, 1991.
Den vollen Inhalt der Quelle findenW, Stone T., Hrsg. Adenosine in the nervous system. London: Academic Press, 1991.
Den vollen Inhalt der Quelle finden1953-, Jacobson Kenneth Alan, Daly John W und Manganiello V, Hrsg. Purines in cellular signaling: Targets for new drugs. New York: Springer-Verlag, 1990.
Den vollen Inhalt der Quelle findenDaly, John W., und Kenneth A. Jacobson. Purines in Cellular Signaling: Targets for New Drugs. Springer, 1990.
Den vollen Inhalt der Quelle findenJacobson, Kenneth A. Purines in Cellular Signaling: Targets for New Drugs. Springer, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Adenine nucleotides Receptors"
Illes, P., K. Nieber und W. Nörenberg. „Neuronal ATP Receptors“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 77–84. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_10.
Der volle Inhalt der QuelleKollias-Baker, Cynthia, John C. Shryock und Luiz Belardinelli. „Myocardial Adenosine Receptors“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 221–28. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_26.
Der volle Inhalt der QuelleJacobson, Marlene A. „Molecular Biology of Adenosine Receptors“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 5–13. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_1.
Der volle Inhalt der QuelleHoppe, Edmund, und Martin J. Lohse. „Desensitization of A1 Adenosine Receptors“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 133–38. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_16.
Der volle Inhalt der QuelleBurnstock, Geoffrey, und Noel J. Buckley. „The Classification of Receptors for Adenosine and Adenine Nucleotides“. In Methods Used in Adenosine Research, 193–212. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4886-3_11.
Der volle Inhalt der QuelleMustafa, S. Jamal, Ravi Marala, Worku Abebe, Neil Jeansonne, Hammed Olanrewaju und Tahir Hussain. „Coronary Adenosine Receptors: Subtypes, Localization, and Function“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 229–39. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_27.
Der volle Inhalt der QuelleBurnstock, Geoffrey. „Receptors for ATP at Peripheral Neuroeffector Junctions“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 289–95. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_33.
Der volle Inhalt der QuelleVanderhaeghen, Jean-Jacques, und Serge N. Schiffmann. „In Situ Hybridization of Adenosine Receptors in Brain“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 21–26. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_3.
Der volle Inhalt der QuelleIJzerman, Ad P., Nora M. van der Wenden, Philip J. M. van Galen und Ken A. Jacobson. „Molecular Modeling of Adenosine A1 and A2a Receptors“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 27–37. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_4.
Der volle Inhalt der QuelleSong, Yejia, John Shryock und Luiz Belardinelli. „Modulation of Cardiomyocyte Membrane Currents by A1 Adenosine Receptors“. In Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, 97–102. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2011-5_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Adenine nucleotides Receptors"
Gordon, J. L. „ADENINE NUCLEOTIDES AND THEREGULATION OF VASCULAR TONE“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643719.
Der volle Inhalt der QuelleVanhoutte, Paul M. „PLATELETS, ENDOTHELIUM AND VASOSPASM“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643722.
Der volle Inhalt der QuelleGray, S. J., und S. Heptinstall. „INTERACTIONS BETWEEn PGE2 AND INHIBITORS OF PLATELET AGGREGATION THAT ACT THROUGH cAMP“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643582.
Der volle Inhalt der QuelleJefferson, J. R., J. T. Harmon und G. A. Jamieson. „ADP-BINDING SITES IN PLATELETS: CHARACTERIZATION BY PHOTOAFFINITY LABELING AND BINDING STUDIES WITH FIXED PLATELETS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644463.
Der volle Inhalt der Quelle