Dissertationen zum Thema „Additive and Subtractive Manufacturing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Additive and Subtractive Manufacturing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Madeleine, Wedlund, und Bergman Jonathan. „Decision support model for selecting additive or subtractive manufacturing“. Thesis, Högskolan i Gävle, Maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26996.
Der volle Inhalt der QuelleAdditiv tillverkning (AM), eller 3D-printing, är en tillverkningsmetod där komponenter produceras genom att succesivt addera material till produkten lagervis, till skillnad från skärande bearbetning där material subtraheras från ett arbetsstycke. Det finns fördelar och nackdelar med respektive metod och det kan vara ett komplext problem att avgöra när den ena metoden är att föredra framför den andra. Syftet med denna studie är att utveckla en beslutstödjande modell (DSM) som hjälper användaren välja lämplig metod med avseende på produktionskostnader. Information inhämtas genom en litteraturstudie samt intervjuer med personer som arbetar med AM och skärande bearbetning. Modellen tar hänsyn till material, storlek, tider, geometrisk komplexitet, efterbearbetning och miljöeffekter. Den beslutstödjande modellen skapades i Microsoft Excel. Skillnaden i pris mellan respektive tillverkningsmetod beroende på antal och komplexitet jämfördes mot litteraturstudien. Modellen för AM verifieras med hjälp av kostnadskalkyler från Sandvik Additive Manufacturing. Felmarginalen är förhållandevis låg på cirka två till sex procent när spillmaterial inte tas hänsyn till. Tyvärr har modellen för skärande bearbetning inte verifieras på grund av en brist på data, vilket därför rekommenderas som fortsatt arbete. Slutsatsen är att AM inte kommer ersätta någon nuvarande tillverkningsmetod. Det är dock ett bra komplement till metallindustrin eftersom små, komplexa komponenter med få toleranskrav gynnas av AM. En undersökning över nuvarande tjänster relaterat till studien genomfördes med ambitionen att utreda om den beslutstödjande modellen kompletterar dessa. Resultatet av undersökningen visar att medan det finns många konsulttjänster som hjälper ett företag implementera AM så är det få som erbjuder någon form av mjukvara. Gällande frågan om AM är lönsam för vissa produkter så var det bara en mjukvara som kunde besvara den, dock utan att visa några kostnader. Den beslutstödjande modellen framtagen i denna studie fyller därmed en funktion bland nuvarande tjänster och mjukvaror.
Luo, Xiaoming. „Process planning for an Additive/Subtractive Rapid Pattern Manufacturing system“. [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389124.
Der volle Inhalt der QuelleJönsson, David, und Mir Kevci. „Geometrical accuracy of metallic objects produced with Additive or Subtractive Manufacturing: a comparative in-vitro study“. Thesis, Malmö högskola, Odontologiska fakulteten (OD), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-19934.
Der volle Inhalt der QuellePurpose: To evaluate the production tolerance of objects produced by additive manufacturing systems (AM) for usage in dentistry and to compare with subtractive manufacturing system (SM) through reverse engineering. Materials and methods: Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, meanwhile object B reflects a four-unit bridge model. All the objects were divided into different measuring-axis; X, Y and Z. Measurements were performed with validated and calibrated equipment. Linear distances were measured with a digital calliper while corner radius and angle were measured with a digital microscope. Results: None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD-file regarding all parameters included in present study. Considering linear measurements, the standard deviation for subtractive manufacturing group were consistent in all axis, except for X- and Y-axis in object A and Y-axis for object B. Meanwhile additive manufacturing groups had a consistent standard deviation in X- and Y- axis but not in Z-axis. Regarding corner radius measurements, SM group overall had the best accuracy for both object A and B comparing to AM groups. Conclusion: Within the limitations of this in vitro study, results support the hypothesis, considering AM had preferable capability to re-create complex and small geometry compare to SM. Meanwhile, SM were superior producing simple geometry and linear distances. Further studies are required to confirm these results.
Cunningham, Victor, Christopher A. Schrader und James (Trae) Young. „Navy additive manufacturing: adding parts, subtracting steps“. Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45834.
Der volle Inhalt der QuelleThis study examines additive manufacturing (AM) and describes its potential impact on the Navy’s Supply Chain Management processes. Included in the analysis is the implementation of 3D printing technology and how it could impact the Navy’s future procurement processes, specifically based on a conducted analysis of the automotive aerospace industry. Industry research and development has identified multiple dimensions of AM technology, including material variety, cost saving advantages, and lead-time minimizations for manufacturing products. This project is designed to provide the Navy with a recommendation based on an in-depth industry case-study analysis.
Lesage, Philippe. „Etude et caractérisation sous sollicitations dynamiques de structures mécaniques en fabrication additive et soustractive“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCA003.
Der volle Inhalt der QuelleAdditive manufacturing is rapidly expanding and attracting increasing interest from industry, scientific research and the general public. Additive processes have opened up opportunities for producing structures with complex geometries compared to traditional manufacturing. However, the mechanical behavior of additive fabrications under loading conditions is not extensively explored. In particular, the mechanical characterization of these fabrications remains a challenge and often limits itself to pseudo-static investigation fields through conventional mechanical testing methods such as tensile tests. This doctoral thesis aims to contribute to the dynamic mechanical characterization of additive manufacturing on a comparative scale with subtractive manufacturing. This contribution is based on the use of modal methods in response to 'Low Velocity' stimuli applied by an impact hammer, and on a 'High Velocity' dynamic method studying the impact behavior of plates produced by additive (SLM) and subtractive processes
Davids, Margaret. „Erasure: An Additive and Subtractive Act“. VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5866.
Der volle Inhalt der QuelleStumpo, Gordon. „Design Iterations Through Fusion of Additive and Subtractive Design“. Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1461602511.
Der volle Inhalt der QuelleHANDAL, RAED S. I. „Additive Manufacturing as a Manufacturing Method: an Implementation Framework for Additive Manufacturing in Supply Chains“. Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1203311.
Der volle Inhalt der QuelleThe supply chain is changing speedily and on a continuous basis to keep up with the rapid changes in the market, which are summarized as increased competition, changes in traditional customer bases, and changes in customers’ expectations. Thus, companies have to change their way of manufacturing final products in order to customize and expedite the delivery of products to customers. Additive manufacturing, the new production system, effectively and efficiently increases the capability of personalization during the manufacturing process. This consequently increases customer’s satisfaction and company’s profitability. In other words, additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. Theoretical development in the field of additive manufacturing in regards to its impact on supply chain management is rare. There is no fully applied approach in the literature that is focused on managing the supply chain when additive manufacturing is applied. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field that evaluates the impact of additive manufacturing and determines the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing “3D printing” impacts supply chain management efficiently. To build the framework, interviews with some companies that already use additive manufacturing in their production system have been carried out. Next, an online survey and two case studies evaluated the framework and validated the results of the final version of the framework. The conceptual framework shows the relationship among supply chain strategies, manufacturing strategy and manufacturing systems. The developed framework shows not only the ability of additive manufacturing to change and re-shape supply chains, but its impact as an alternative manufacturing technique on supply chain strategies. This framework helps managers select more effective production methods based on certain production variables, including product’s type, components’ value, and customization level.
Keil, Heinz Simon. „Quo vadis "Additive Manufacturing"“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214719.
Der volle Inhalt der QuelleCAIVANO, RICCARDO. „Design for Additive Manufacturing: Innovative topology optimisation algorithms to thrive additive manufacturing application“. Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2957748.
Der volle Inhalt der QuelleLeirvåg, Roar Nelissen. „Additive Manufacturing for Large Products“. Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20870.
Der volle Inhalt der QuelleJun, Sung Yun. „Additive manufacturing for antenna applications“. Thesis, University of Kent, 2018. https://kar.kent.ac.uk/68833/.
Der volle Inhalt der QuellePEDEMONTE, LAURA CHIARA. „Laser in Metal Additive Manufacturing“. Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/973605.
Der volle Inhalt der QuelleRanjan, Rajit. „Design for Manufacturing and Topology Optimization in Additive Manufacturing“. University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439307951.
Der volle Inhalt der QuelleLebherz, Matthias, und Jonathan Hartmann. „Commercializing Additive Manufacturing Technologies : A Business Model Innovation approach to shift from Traditional to Additive Manufacturing“. Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36132.
Der volle Inhalt der QuelleKhan, Imran. „Electrically conductive nanocomposites for additive manufacturing“. Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670587.
Der volle Inhalt der QuelleLa fabricación aditiva (AM) es un proceso de fabricación de capas sucesivas de material para construir un objeto sólido tridimensional a partir de un modelo digital, a diferencia de las metodologías de fabricación sustractiva. AM ofrece la libertad de diseñar e innovar un producto para que se puedan obtener y revisar piezas complejas si es necesario, en un tiempo reducido en comparación con las tecnologías de fabricación tradicionales. En términos de su utilización total y generalizada, la tecnología tiene aplicaciones limitadas. Por motivos similares, la nanotecnología se considera la fuerza impulsora detrás de una nueva revolución industrial. Tiene la capacidad de incorporar funcionalidades específicas, que se producen debido a la escala nanométrica, a las partes deseadas para dispositivos funcionales como electrodos para dispositivos de almacenamiento de energía. La tesis se centra en el uso de nanocompuestos conductores de electricidad en la fabricación aditiva. En este escenario, dos tipos de nanocompuestos están preparados para usar como materia prima para la impresión de nanocompuestos conductores de electricidad que emplean dos tipos diferentes de material matricial; (1) un polímero termoplástico y (2) una resina termoestable. Los nanotubos de carbono se usaron como partículas de nanoestructura eléctricamente conductoras. Estas nanoestructuras forman redes complejas en una matriz polimérica de manera que el material de la matriz se transforma de un material aislante en un material eléctricamente conductor. La policaprolactona es un polímero semicristalino y se considera un material matriz adecuado entre la clase de polímeros termoplásticos, ya que ofrece excelentes características reológicas, de flujo y elásticas. Los hilos se imprimieron usando una extrusora biológica y se midió la conductividad eléctrica en estos hilos bajo el efecto de la deformación uniaxial. La microestructura cambia bajo el efecto de una deformación uniaxial que conduce a alterar la orientación de los nanotubos de carbono en la matriz de policaprolactona. Como consecuencia de la realineación de los nanotubos, las vías conductoras interrumpen u organizan, lo que puede aumentar o disminuir la conductividad eléctrica en los nanocompuestos. Las radiaciones de sincrotrón se utilizan para sondear tales cambios en la microestructura. Se prepararon diferentes composiciones usando nanotubos de carbono y las muestras impresas se estudiaron en términos de conductividad eléctrica y microestructura usando radiaciones sincrotrónicas. Basado en el análisis, se propone un modelo que puede predecir la conductividad eléctrica bajo el efecto de la deformación uniaxial. En términos de polímeros termoestables, se introduce un sistema simple para la impresión de nanocompuestos termoestables a base de polímeros. El detalle completo del sistema de impresión y la tinta de nanocompuestos se proporciona en uno de los capítulos. La tinta de nanocompuesto a base de epoxi se preparó para contener nanotubos de carbono como partículas de relleno con una pequeña porción de polímero termoplástico, policaprolactona. Las muestras impresas están sujetas al sesgo externo que indica que son eléctricamente conductoras. Se prepararon diferentes composiciones usando resina epoxi de glicidil bisfenol-A, trietilentetramina, policaprolactona, nanotubos de carbono y se resaltan los problemas para adquirir la calidad de impresión adecuada. Las muestras impresas se estudiaron en términos de conductividad eléctrica, estudiando la conductividad eléctrica de corriente alterna y continua. El sistema de materiales se explora en términos del nivel de reticulación, estructura y morfología y comportamiento térmico. Se presenta un modelo para los nanocompuestos utilizando datos de impedancia obtenidos mediante espectroscopía dieléctrica de banda ancha. La impresora se utilizará en el futuro para imprimir dispositivos funcionales a pequeña escala, incluidos dispositivos de almacenamiento de energía.
Additive manufacturing is a process of making successive layers of material to build a three-dimensional solid object from a digital model, as opposed to subtractive manufacturing methodologies. This technology offers the freedom to design and innovation of a product so that complex parts can be obtained and revise if needed, within a small time as compared to traditional manufacturing technologies. In terms of its full utilization and widespread, the technology has limited applications. On similar grounds, nanotechnology is considered as the driving force behind a new industrial revolution. It has the ability to incorporate specific functionalities, occur due to the nanometric scale, to desired parts that offer freedom to design functional devices like electrodes for energy storage devices. The thesis is focusing on the use of electrically conductive nanocomposites into additive manufacturing. In this scenario, two types of nanocomposites are prepared to use as raw material for printing of electrically conductive nanocomposites employing two different types of matrix material; (1) a thermoplastic polymer and (2) a thermoset resin. Carbon nanotubes were used as electrically conductive nanostructure particles. These nanostructures form complex networks into a polymer matrix such that the matrix material transforms from an insulative material into an electrically conductive material. Polycaprolactone is a semicrystalline polymer and it is considered suitable matrix material amongst the class of thermoplastic polymers as it offers excellent rheological, flow and the elastic characteristics. Strands were printed using a bio extruder and electrical conductivity was measured in these strands under the effect of uniaxial deformation. The microstructure changes under the effect of uniaxial deformation leading to alter the orientation of carbon nanotubes in the polycaprolactone matrix. As a consequence of realignment of nanotubes, conductive pathways either disrupt or organize which can increase or decrease an electrical conductivity in the nanocomposites. Synchrotron radiations are used to probe such changes in the microstructure. Two different compositions were prepared using carbon nanotubes and the printed samples are studied in terms of electrical conductivity and microstructure using synchrotron radiations. Based on the analysis, a model is proposed that can predict the orientation of carbon nanotubes under the effect of uniaxial deformation. In terms of thermoset polymers, a simple system is introduced for the printing of thermoset polymer (epoxy) based nanocomposites. Complete detail of the printing system is provided in one of the chapters. Epoxy-based nanocomposite ink was prepared to contain carbon nanotubes as filler particles with a small portion of thermoplastic polymer, polycaprolactone. The printed samples are subject to the external bias which indicate that these are electrically conductive. A complete methodology was provided for the preparation of nanocomposite ink. Different compositions were prepared using glycidyl bisphenol-A epoxy resin, triethylenetetramine, polycaprolactone, carbon nanotubes and issues are highlighted to acquire appropriate print quality. The printed samples were studied in terms of electrical conductivity studying alternating and direct current electrical conductivity. The material system is explored in terms of the level of crosslinking, structure and morphology and thermal behaviour. A model is presented for the nanocomposites using impedance data obtained through broadband dielectric spectroscopy. The printer will be used in future to print small scale functional devices including energy storage devices e.g. solid-state batteries, supercapacitors and electrode plates for such kind of devices.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
Nopparat, Nanond, und Babak Kianian. „Resource Consumption of Additive Manufacturing Technology“. Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3919.
Der volle Inhalt der QuelleMcLearen, Luke J. „Additive manufacturing in the Marine Corps“. Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45903.
Der volle Inhalt der QuelleAs the Marine Corps continues to conduct small-unit distributed operations, the strain on its logistics intensifies. The Marine Corps must search for a solution to increase the efficiency and responsiveness of its logistics. One solution is using additive manufacturing, commonly referred to as 3D printing. This thesis answers the question of how additive manufacturing can improve the effectiveness of Marine Corps logistics. In order to answer the question, beneficial process(es), application(s), and level of integration are determined through a comparative analysis of current and future 3D-printing processes, examination of several civilian and military examples, and examination of the impact across current doctrine, organization, training, material, leadership, personnel, and facilities. Several issues should be addressed prior to the Marine Corps fully integrating 3D printers, such as the lack of certification and qualification standards, unreliable end product results, and determining ownership of intellectual property. When these issues are properly mitigated, the Marine Corps should procure printers for the purpose of manufacturing repair parts, tools, and other support aids. Marine Expeditionary Units should be the first units to receive the printers. If the printers are integrated properly, they could assist logisticians in supporting Marines conducting distributed operations throughout the battlefield.
Raza, Irfan Mohammad Hussain. „Additive manufacturing of locally resonant metamaterials“. Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/54773.
Der volle Inhalt der QuelleJones, Rhys Owen. „Additive manufacturing of functional engineering components“. Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577739.
Der volle Inhalt der QuelleWehrs, Jason. „Financing for growth in additive manufacturing“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117985.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 39-40).
Digital fabrication technologies have been improving their capabilities and competitiveness steadily over the past decade and may be approaching an inflection point in their enterprise adoption. However, several important technological, economic (cost) and business (adoption risk) barriers stand in the way of broader adoption. This research seeks to explore the rich history that has driven the growth of Additive Manufacturing (3D Printing) in the application of manufacturing of a displacement or augmentation of current production level techniques, what business model or characteristics will continue to drive growth and industrial adoption, and the current limitation that must be overcome to unlock broader enterprise adoption. Furthermore, from the viewpoint of growth financing, this paper seeks to answer two critical questions to highlight investment opportunities in the space of Additive Manufacturing; 1) Where is digital fabrication positioned to compete with traditional manufacturing methods over the next five years and what are the key enablers, and 2) As digital fabrication becomes more competitive for different applications, who in the value chain benefits the most.
by Jason Wehrs.
M.B.A.
Garza, Jose M. (Jose Manuel Garza Estrada). „Understanding the adoption of additive manufacturing“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/110892.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-56).
Additive Manufacturing (AM) -commonly known as 3d printing - is experiencing an upward trend as measured by a number of metrics, such as patent filing and number of company entries. The number of companies manufacturing hardware, software and materials serving both consumer and industrial segments of this industry has increased over recent years. This technology has radically changed how companies, designers and consumers in general go about prototyping their ideas. AM has also impacted low-volume manufacturing by allowing the production of small batches of products with all the advantages and flexibility the technology confers. Because the industry is still in its fluid phase, a high level of activity and significant changes are still to come. Employing Diffusion of Innovation theory by E.M. Rogers [1] which proposes the use of five factors or dimensions to assess the diffusion speed: relative advantage, compatibility, complexity, triability and observability; the study followed a two-pronged methodology. First I conducted semi-structured interviews and observational analysis; then, I analyzed technological developments, patent activity and firm entry. This study uncovers that 3d-printing something without observing technical requirements is quite easy. But 3d-printing a product that complies with a set of product requirements and specifications, so that the component can then be used in the context of a larger assembly or specific use, is quite another story. Based on observational data this thesis describes the vicissitudes of designing, selecting the printer, setting up the printer's parameters and ultimately printing a component, and thus demonstrates a perspective of the adoptability of this technology.
by Jose M. Garza.
S.M. in Engineering and Management
Tsai, Elizabeth Yinling. „4D printing : towards biomimetic additive manufacturing“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/91821.
Der volle Inhalt der Quelle"September 2013." Cataloged from PDF version of thesis.
Includes bibliographical references (pages 69-76).
Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and deliberate, static artifacts with no variation of function across directions, distances or time fail to capture many of these dimensions. Inspired by Nature's ability to generate complex structures and responses to external constraints through adaptation, "4D printing" addresses additive fabrication of artifacts with one or more additional design dimension, such as material variation over distance or direction and response or adaptation over time. This work presents and evaluates a series of enabling explorations into the material, time and information dimensions of additive manufacturing: a variable elasticity rapid prototyping platform and an approach towards Digital Anisotropy, a variable impedance prosthetic socket (VTS) as a case study of interfaces between nature and manufacture, CNSilk as an example of on-demand material generation in freeform tensile fabrication, and Material DNA as an exploration into embedded spatio-temporal content variation.
by Elizabeth Yinling Tsai.
S.M.
Klein, John S. M. Massachusetts Institute of Technology. „Additive manufacturing of optically transparent glass“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101831.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 90-92).
The thesis presents an Additive Manufacturing Enabling Technology for Optically Transparent Glass. The platform builds on existing manufacturing traditions and introduces new dimensions of novelty across scales by producing unique structures with numerous potential applications in product-, and architectural-design. The platform is comprised of scalable modular elements able to operate at the high temperatures required to process glass from a molten state to an annealed product. The process demonstrated enables the construction of 3D parts as described by Computer Aided Design (CAD) models. Processing parameters such as temperature, flow rate, layer height and feed rate, can be adjusted to tailor the printing process to the desired component; its shape and its properties. The research explores, defines and hard-codes geometric constraints and coiling patterns as well as the integration of various colors into the current controllable process, contributing to a new design and manufacturing space. Performed characterization of the printed material to determine its morphological, mechanical and optical properties, is presented and discussed. Printed parts demonstrated strong adhesion between layers and satisfying optical clarity. The molten glass 3D printer as well as the fabricated objects exhibited, demonstrate the production of parts which are highly repeatable, enable light transmission, and resemble the visual and mechanical performance of glass constructs that are conventionally obtained. Utilizing the optical nature of glass, complex caustic patterns were created by projecting light through the printed objects. The 3D printed glass objects and process described here, aim to contribute new capabilities to the ever-evolving history of a very challenging but limitless material - glass.
by John Klein.
S.M.
Go, Jamison. „High-throughput extrusion-based additive manufacturing“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101812.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 171-179).
Additive manufacturing (AM), the process of building objects layer by layer from a three dimensional digital model, is gaining significance due to its ability to create unique geometries and/or novel material compositions while spanning a wide range of length scales. However, the viability of using AM for the production of end-use parts hinges on improvements to production speed without making sacrifices to quality. This thesis seeks to understand the rate-limits to extrusion-based AM, commonly referred to as fused deposition modeling (FDM), and to demonstrate this understanding via the design and fabrication of a high-throughput extrusion AM platform. Three subsystems - the pinch wheel extruder, the conduction liquefier, and the open loop series gantry - were identified as rate limiting to conventional FDM systems via module level experimentation and analysis. These limitations motivated the development of three alternate mechanisms -a screw-feed extruder, a laser-heated extruder, and H-frame gantry - which are designed to overcome the limitations of conventional techniques. These mechanisms are combined into a high-throughput desktop-scale prototype, called FastFDM. Using the FastFDM system, test parts are fabricated at twice the material deposition rate of state-of-the-art machines while maintaining comparable accuracy and resolution. The FastFDM approach has promising future applications to the extrusion AM of nanocomposite polymer resins, high-throughput AM of high performance thermoplastics, and adaptation to large-scale extrusion AM systems.
by Jamison Go.
S.M.
Mellor, Stephen. „An implementation framework for additive manufacturing“. Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15036.
Der volle Inhalt der QuelleClark, Nicholas. „Microwave methods for additive layer manufacturing“. Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/102996/.
Der volle Inhalt der QuelleHardyman, Micah Dwayne. „Felted Objects via Robotic Additive Manufacturing“. Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103177.
Der volle Inhalt der QuelleMaster of Science
In this paper a new approach to Additive Manufacturing centered on mechanically binding fibers together into a cohesive part is presented. This is accomplished via a robotic system and a process called felting, whereby needles push fibers into each other, entangling them. To validate this approach each system and method was tested individually. We present the results of mechanical tests of a variety of felted samples. Given the results, it is believed that robotic needle felting may be a beneficial method of manufacture for several fields, and it has the potential to easily make customized products.
Singh, Manjot. „Conformal Additive Manufacturing for Organ Interface“. Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/86202.
Der volle Inhalt der QuelleMaster of Science
Mikler, Calvin. „Laser Additive Manufacturing of Magnetic Materials“. Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011873/.
Der volle Inhalt der QuelleMarkusson, Lisa. „Powder Characterization for Additive Manufacturing Processes“. Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-62683.
Der volle Inhalt der QuelleWahlström, Niklas, und Oscar Gabrielsson. „Additive Manufacturing Applications for Wind Turbines“. Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209654.
Der volle Inhalt der QuelleAdditiv tillverkning, "additive manufacturing" (AM) eller 3D-printing är en automatiserad tillverkningsmetod där komponenten byggs lager för lager från en fördefinierad 3D datormodell. Till skillnad från konventionella tillverkningsmetoder där en stor mängd material ofta bearbetas bort, använder AM nästintill endast det material som komponenten består utav. Förutom materialbesparingar, har metoden ett flertal andra potentiella fördelar. Två av dessa är (1) en stor designfrihet vilket möjliggör produktion av komplexa geometrier och (2) en möjlighet till en förenklad logistikkedja eftersom komponenter kan tillverkas vid behov istället för att lagerföras. Detta examensarbete har utförts på Vattenfall Vindkraft och har till syfte att undersöka om det är möjligt att tillverka och/eller reparera en eller två reservdelar genom AM och om det i så fall kan införa några praktiska fördelar. En kartläggning av komponenter med hög felfrekvens och/eller som kan vara lämpade för AM har genomförts. Av dessa har en roterande oljekoppling även kallad roterskarv valts ut för vidare analys. En omfattande bakgrundsstudie har utförts. En nulägesorientering inom området AM för metaller redogörs, här redovisas även en generell jämförelse mellan konventionella och additiva tillverkningsmetoder. Vidare behandlas aktuella och framtida användningsområden för AM inom vindkraftsindustrin. I bakgrundsstudien behandlas också arbetssättet "reverse engineering", huvudkomponenter i ett vindkraftsverk inklusive roterskarven samt flödesdynamik. Under arbetets gång har en roterskarv med sämre driftshistorik undersökts. I syfte att finna andra konstruktionslösningar som bidrar till en säkrare drift har en bättre presenterande enhet från en annan tillverkare granskats. Då viss detaljteknisk data och konstruktionsunderlag saknas för de undersökta enheterna har "reverse engineering" tillämpats. Ett koncept har sedan utvecklats för den första enheten där förbättrade konstruktionslösningar har introducerats samtidigt som en rad konstruktionsförändringar har gjorts i syfte att minimera materialåtgången och samtidigt anpassa enheten för AM. Konceptet har sedan evaluerats med hjälp av numeriska beräkningsmetoder. För det givna konceptet har även kostnad och byggtid uppskattats. Arbetet visar på att det är möjligt att ta fram reservdelar till vindkraftverk med hjälp av AM. Det framtagna konceptet visar på ett flertal förbättringar som inte kan uppnås med konventionella tillverkningsmetoder. Emellertid finns det en rad begränsningar såsom otillräcklig byggvolym, kostnader och tidskrävande ingenjörsmässigt arbete och efterbehandlingsmetoder. Dessa förbehåll i kombination med avsaknad av 3D-modeller begränsar möjligheterna att nyttja tekniken i dagsläget. Framtiden ser dock ljus ut, om tekniken fortsätter att utvecklas samtidigt som underleverantörer är villiga att nyttja denna teknik kan AM få ett stort genombrott i vindkraftsindustrin.
Strano, Giovanni. „Multi-objective optimisation in additive manufacturing“. Thesis, University of Exeter, 2012. http://hdl.handle.net/10871/8405.
Der volle Inhalt der QuelleSjölund, William. „Volvos next step in additive manufacturing“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-161398.
Der volle Inhalt der QuelleOne of the fastest growing areas in the manufacturing industry today is additive manufacturing with a large application area that is only getting bigger. Additive manufacturing is when material is added instead of removed in order to produce a part. In connection with the technology being developed, additive manufacturing has become more and more common in the industry where its applications can save companies a large amount of money. An area where additive manufacturing can be shown to be useful is in the production at Volvo GTO, Umeå which is Volvo's leading manufacturer of truck cabins. To investigate whether additive manufacturing can reduce the manufacturing cost, increase the quality of the product or reduce the delivery time at the factory, the investigator has researched what possible cases related to additive manufacturing there is by having meetings and discussions with employees at the factory and finding where the additive technology could be applied. Six cases were found that were investigated. The cases included, among other things, nozzles in the sealing line, vacuum forming templates for the carpentry department and paint distributors on painting robots. The cases were investigated by examining and testing to see which additive technology is best suited for that particular case. When all cases had been investigated thoroughly, an investment priority list was created to create a plan for how the factory should continue its investment in the additive technology. The order on the list is based on what the investigator thought was most important and feasible. The sequence became: FFF printer without locked material system, SLA printer and a MJF printer. It was also found that the factory can save 423 384 SEK a year already by utilizing other additive methods than the one already in place in the factory.
Sandell, Malin, und Saga Fors. „Design for Additive Manufacturing - A methodology“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263134.
Der volle Inhalt der QuelleAdditiv tillverkning (AM), även kallat 3D-printing, är benämningen på en grupp tillverkningstekniker där en produkt byggs lager för lager. Denna masteruppsats har utförts i samarbete med ett svenskt industriföretag som levererar lösningar inom tillverkningsindustrin, i rapporten kallat Företaget. Genom att utveckla nya designprocesser och metoder vill Företaget inkludera AM i sin tillverkningsstrategi. Syftet med detta masterexamensarbete var att utveckla en metodik för hur urval och utveckling av produkter anpassade för AM ska ske. Utvecklingen av metodiken följer principerna för tjänstedesign, vilket innebär ett holistiskt tvärvetenskapligt arbetssätt där metoder från olika discipliner kombineras för att skapa en positiv upplevelse för slutanvändaren. Innan utvecklingsprocessens start gjordes en stor bakgrundsstudie för att införskaffa kunskaper kring AM. Därefter utvecklades en metod genom fem iterativa cykler där metoder som intervjuer, triggermaterial, frågeformulär, fallstudier och stakeholdermapping användes. Masteruppsatsen resulterade i en handbok med information kring teknikerna och en metodik i fem steg för att välja när och varför AM bör användas som tillverkningsmetod. Första steget är att identifiera AM potentialen hos en produkt, vilket baseras på komplexitet, kundanpassning och produktionsvolym. I steg två ska produktkrav specificeras, exempel på sådana krav är ytfinhet och toleranser. Tredje steget i metoden handlar om en produkt-undersökning under vilken ett slutgiltigt beslut fattas angående om produkten kan och bör tillverkas. I fjärde steget sker valet av teknik baserat på de produktkrav som specificerats i steg två, genom att information ges angående teknikens möjligheter och begränsningar. Femte steget i metoden handlar om designen av AM produkter och förser konstruktören med enklare riktlinjer för designen. Utveckling av en metodik kräver ett dynamiskt arbetssätt och principerna inom service design visade sig passa bra för detta projekt. Det visade sig också att den resulterade metodik behöver kompletteras med information i framtiden. Det behövs även fastställas tydliga mål för AM i företaget och vilket syfte implementeringen av denna nya process innebär
Henprasert, Pantip. „Comparison of the accuracy of implant position using surgical guides fabricated by additive and subtractive techniques“. Thesis, University of Iowa, 2019. https://ir.uiowa.edu/etd/6956.
Der volle Inhalt der QuelleLami, Isacco. „Ottimizzazione di strutture reticolari in additive manufacturing“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Den vollen Inhalt der Quelle findenMohamad, Khan Shah Fenner. „Novel indirect additive manufacturing for processing biomaterials“. Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/3022.
Der volle Inhalt der QuelleKarmakar, Mattias. „Additive Manufacturing Stainless Steel for Space Application“. Thesis, Luleå tekniska universitet, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72901.
Der volle Inhalt der QuelleByron, Andrew James. „Qualification and characterization of metal additive manufacturing“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104315.
Der volle Inhalt der QuelleThesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 119-123).
Additive manufacturing (AM) has emerged as an effective and efficient way to digitally manufacture complicated structures. Raytheon Missile Systems seeks to gain limited production capability with metals AM, which can only be achieved with qualified, predictable processes that reduce variation. The project documented in this thesis produced two results needed to qualify AM for use on flight-critical parts: i) creation of a standard qualification process building upon Raytheon's product development knowledge, and ii) selection and identification of key metals AM process factors and their corresponding experimental responses. The project has delivered a qualification test plan and process that will be used next year to drive adoption and integration of Raytheon's metals AM technology. The first phase of the designed experiment on AM process factors was completed by experimenting with coupon orientation, position on the build platform, coupon shape and hot isostatic pressing (HIP) post-treatment for an Al alloy (AlSi10Mg) produced via laser powder bed fusion using 400-watt laser equipment. Only coupon orientation had a statistically significant effect on dimensional accuracy, increasing the variance of y-axis (within the build plane) error by ~50%, although this is considered a small increase. HIP decreased yield and ultimate stresses by ~60% while increasing ultimate strain by ~250%. Vertical orientation of coupons decreased yield and ultimate stresses by ~25% and increased ultimate strain by ~30%. Small coupon area on the build platform, associated with thin rectangle coupons, decreased yield stress and ultimate strain by ~5%. The processes and case study from this thesis represent a general advance in the adoption of metals AM in aerospace manufacturing.
by Andrew James Byron.
M.B.A.
S.M. in Engineering Systems
Cersoli, Trenton M. „Shape Memory Polymers Produced via Additive Manufacturing“. Youngstown State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1619817489890187.
Der volle Inhalt der QuelleChiu, Brendon W. „Additive manufacturing applications and implementation in aerospace“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126950.
Der volle Inhalt der QuelleThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 107-108).
Many aerospace companies are turning to additive manufacturing solutions to stream-line current production processes and open opportunities for on-demand producibility. While many OEMs are drawn to the appeal of the benefits that additive manufacturing brings, they are beginning to understand the difficulties in what it takes to realize those benefits. This paper analyzes additive manufacturing from an industry perspective down to a company perspective to develop a deeper understanding of the practical use cases as well as the various challenges a company faces should they choose to enter this market. This study begins with market research on the additive manufacturing and aerospace industry before honing in on a several use-case parts from rotary aircraft. Selection criterion were created and applied to analyze the value that additive manufacturing would bring in comparison to that of conventional methods, ultimately determining its feasibility for additive manufacturing.
This study applied the selection criterion to various parts of differing functions among the aircraft, resulting in a group of candidate parts. An evaluation method was created and applied to provide an objective assessment on the candidate parts. Initial insights show that additive manufacturing favor casted parts with features that can be optimized to increase performance and reduce costs and weight. In addition, aerospace has the best product mix of low volume parts that are advantageous to the economies of scale for additive manufacturing. Additionally, this study analyzes a company's organization and previous additive manufacturing efforts to propose ways to approach future development. Venturing through the various road maps that lead to the final goal of certification and addressing organizational barriers generate momentum for continuous development.
These road maps, selection criterion, and evaluation method can be applied through many applications within the general aerospace industry.
by Brendon W Chiu.
M.B.A.
S.M.
M.B.A. Massachusetts Institute of Technology, Sloan School of Management
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Tenney, Charles M. „Impedance-based Nondestructive Evaluation for Additive Manufacturing“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99966.
Der volle Inhalt der QuelleDoctor of Philosophy
Impedance-based Non-Destructive Evaluation for Additive Manufacturing (INDEAM) is a quality control approach for detecting defects in structures. As indicated by the name, impedance-based evaluation is discussed in this work in the context of qualifying additively manufactured (3D printed) structures. INDEAM fills a niche in the wider world of nondestructive evaluation techniques by providing a less expensive means to qualify structures with complex geometry. Complex geometry complicates inspection by preventing direct, physical access to all the surfaces of a part. Inspection approaches for parts with complex geometry suffuse a structure with energy and measure how the energy propagates through the structure. A prominent technique in this space is CT scanning, which measures how a structure attentuates x-rays passing through it. INDEAM uses piezoelectric materials to both vibrate a structure and measure its response, not unlike listening for the dull tone of a cracked bell. By applying voltage across a piezoelectric patch glued to a structure, the piezoelectric deforms itself and the bonded structure. By monitoring the electrical current needed to produce that voltage, the ratio of applied voltage to current draw---impedance---can be calculated, which can be thought of as a measure of how a system stores and dissipates energy. When the applied voltage oscillates near a resonant frequency of a structure (the pitch of a rung bell, for example) the structure vibrates much more intensely, and that additional movement dissipates more energy due to viscosity, friction, and transmitting sound into the air. This phenomenon is reflected in the measured impedance, so by calculating the impedance value over a large range of frequencies, it is possible to identify many resonances of the structure. So, the impedance value is tied to the vibrational properties of the structure, and the vibration of the structure is tied to its geometry and material properties. One application of this relationship is called impedance-based structural health monitoring: taking measurements of a structure when it is first built as a reference, then measuring it again later to watch for changes that indicate emerging damage. In this work, the reference measurement is established by measuring a group of control structures that are known to be free of defects. Then, every time a new part is fabricated, its impedance measurements will be compared to the reference. If it matches closely enough, it is assumed good. In both cases, impedance values don't indicate what the change is, just that there was a change. A large portion of this work is devoted to determining the types and sizes of defects that can be reliably detected through INDEAM, what effect the part material plays, and how and where the piezoelectric should be mounted to the part. The remainder of this work discusses new methods for conducting impedance-based evaluation. In particular, overcoming the extra uncertainty introduced by moving from part-to-itself structural health monitoring comparisons to the part-to-part quality control comparisons discussed in this work. A new method for mathematically comparing impedance values is introduced which involves extracting the resonant properties of the structure rather than using statistical tools on the raw impedance values. Additionally, a new method for assessing the influence of piezoelectric mounting conditions on the measured impedance values is demonstrated.
Ramakrishna, Yogendra Jayanth. „Image Analysis Methods For Additive Manufacturing Applications“. Thesis, Högskolan Väst, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-15891.
Der volle Inhalt der QuelleSchick, David E. „Characterization of Aluminum 3003 Ultrasonic Additive Manufacturing“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259773538.
Der volle Inhalt der QuelleBrant, Anne. „An Explorative Study of Electrochemical Additive Manufacturing“. University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1470672617.
Der volle Inhalt der QuelleMelpal, Gopalakrishna Ranjan. „Conformal Lattice Structures in Additive Manufacturing (AM)“. University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535382325233769.
Der volle Inhalt der QuelleYannetta, Christopher James. „Additive Manufacturing of Metastable Beta Titanium Alloys“. Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011883/.
Der volle Inhalt der QuelleEyers, Daniel. „The flexibility of industrial additive manufacturing systems“. Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/74425/.
Der volle Inhalt der QuelleAkande, Stephen Oluwashola. „Development of quality system for additive manufacturing“. Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2831.
Der volle Inhalt der Quelle