Dissertationen zum Thema „ADAS systémy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "ADAS systémy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Pieger, Matúš. „Sledování řidiče“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442532.
Der volle Inhalt der QuelleRobinson, J. „ADDS : An Ada dialogue development system“. Thesis, University of Bradford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374926.
Der volle Inhalt der QuelleAgha, Jafari Wolde Bahareh. „A systematic Mapping study of ADAS and Autonomous Driving“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42754.
Der volle Inhalt der QuelleNos, Pavel. „Využití průmyslového senzorového systému ADAM pro laboratorní měření“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217288.
Der volle Inhalt der QuelleMartinez, Leandro Andrade. „Um framework para coprojeto de hardware e software de sistemas avançados de assistência ao motorista baseados em câmeras“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06122017-104613/.
Der volle Inhalt der QuelleThe demand for new technologies, enhanced security and comfort for urban cars has grown considerably in recent years prompting the industry to create systems designed to support drivers (ADAS - Advanced Driver Assistance Systems). This fact contributed to the development of many embedded systems in the automotive area among them, the pedestrians collision avoidance. Through the advancement in various research, began circulating through the streets vehicles with anti-collision systems and autonomous navigation. However, to achieve ever more challenging goals, designers need tools to unite technology and expertise from different areas efficiently. In this context, there is a demand for building systems that increase the level of abstraction of models of image processing for use in embedded systems enabling better design space exploration. To help minimize this problem, this research demonstrates a develop a specific framework for hardware/software codesign to build ADAS systems using computer vision. The framework aims to facilitate the development of applications, allowing better explore the design space, and thus contribute to a performance gain in the development of embedded systems in relation to building entirely in hardware. One of the requirements of the project is the possibility of the simulation of an application before synthesis on a reconfigurable system. The main challenges of this system were related to the construction of the intercommunication system between the various Intellectual Property (IP) blocks and the software components, abstracting from the end user numerous hardware details, such as memory management, interruptions, cache, types (Floating point, fixed point, integers) and so on, enabling a more user-friendly system for the designer.
Joubert, Damien. „Conception pour le véhicule autonome et les applications ADAS sécuritaires d'un système vidéo ADAS coopératif à base de rétines CMOS“. Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC045.
Der volle Inhalt der QuelleThe perception by monocular vision is an issue not solved yet. While a competition exists between many companies and huge investments were raised, the expected level of performance to autonomous driving is still not reached. Even if some advanced driving assistance systems functionalities make the driver believe that he can be less focused, it is not the case in practice and the responsibility is still based on its shoulder. This work aims at building a robust front vision system combining two modalities, thanks to the use of an artificial CMOS retina, or an event-based sensor, whose pixels can detect and timestamp positive or negative relative changes of illuminance. The frequency of data acquisition depends on the kinetic of the scene which could vary a lot in automotive scenarios. The two modalities extracted from the sensor are on one side conventional image processing algorithms, and on the other side the detection of light signals emitted by targets, modulated with high frequencies and characterizing the state or the orientation of the object. This work firstly aims at measuring CMOS retinas parameters, in order to design a simulation model and also to determine how the parameters evolve when facing automotive constraints. This step is articulated around the design of a characterization setup and the implementation of a sensor modelusing the measurements realized on the characterization setup. This latter also enables to quantify the performances achieved by the algorithms which detect modulated light signals, to check that each detection corresponds to the good cooperative signal and enable to optimize the sensor’s response to the range of frequencies used. The detection is demonstrated on simulation experiments and on a prototype, with a scope of 150 meters using a frequency equal to 5 kHz. The algorithms proposed in this work allow to keep the asynchronous characteristic of the data stream. The limitations of the technology have been identified to realize signal’s detection, and an attention can be provided to the next generations of CMOS retinas. In parallel, a detection and classification method based on convolutional neural networks is implemented. It consists of the creation of artificial images by integrating events over time, and to apply a transfer learning technique with a network trained on conventional images, made possible using dedicated data augmentation strategies to avoid overlearning. This network is then used to initialized tracking functions to determine the time to collision. This step uses the asynchronous advantage of event-based data, byestimating the movement locally through the computation of the optical flow. The simulation model of the sensor allows to test some algorithms and to evaluate the performance as a function of sensor’s parameters like the latency or the background noise. A prototype is set on test tracks to demonstrate that event-based tracking is much more efficient than image-based tracking. Finally, some attempts are tested to fuse the two modalities, and illustrate that the positioning of the target emitting the cooperative signal is complicated to manage without using the content of the conventional image. However, the classification and the tracking of the objects is improved in some cases thanks to the cooperative signal, which removes the density of a scene to be more focused on targets. This work, between sensors and algorithms, demonstrate how a cooperative vision system can be inserted into the perception function of autonomous vehicles to guarantee an optimal level of performances
Jeon, Dae Kyung. „Methodologies for developing distributed systems in Ada with a simulation of a distributed Ada system“. Virtual Press, 1989. http://liblink.bsu.edu/uhtbin/catkey/722459.
Der volle Inhalt der QuelleDepartment of Computer Science
Aziz, Tabinda. „Empirical Analyses of Human-Machine Interactions focusing on Driver and Advanced Driver Assistance Systems“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/195975.
Der volle Inhalt der QuelleBareiss, Max. „Effectiveness of Intersection Advanced Driver Assistance Systems in Preventing Crashes and Injuries in Left Turn Across Path / Opposite Direction Crashes in the United States“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/96570.
Der volle Inhalt der QuelleM.S.
Future vehicles will have electronic systems that can avoid crashes in some cases where a human driver is unable, unaware, or reacts insufficiently to avoid the crash without assistance. The objective of this work was to determine, on a national scale, how many crashes and injuries could be avoided due to Intersection Advanced Driver Assistance Systems (I-ADAS), a hypothetical version of one of these up-and-coming systems. This work focused on crashes where one car is turning left at an intersection and the other car is driving through the intersection and not turning. The I-ADAS system has sensors which continuously search for other vehicles. When the I-ADAS system determines that a crash may happen, it applies the brakes or otherwise alerts the driver to apply the brakes. Rather than conduct actual crash tests, this was simulated on a computer for a large number of variations of the I-ADAS system. The basis for the simulations was real crashes that happened from 2005 to 2007 across the United States. The variations that were simulated changed the time at which the I-ADAS system triggered the brakes (or alert) and the simulated amount of computer time required for the I-ADAS system to make a choice. In some turning crashes, the car cannot see the other vehicle because of obstructions, such as a line of people waiting to turn left across the road. Because of this, simulations were conducted both with and without the visual obstruction. For comparison, we performed a simulation of the original crash as it happened in real life. Finally, since there are two cars in each crash, there are simulations when either car has the I-ADAS system or when both cars have the I-ADAS system. Each simulation either ends in a crash or not, and these are tallied up for each system variation. The number of crashes avoided compared to the number of simulations run is crash effectiveness. Crash effectiveness ranged from 1% to 84% based on the system variation. For each crash that occurred, there is another simulation of the time immediately after impact to determine how severe the impact was. This is used to determine how many injuries are avoided, because often the crashes which still happened were made less severe by the I-ADAS system. In order to determine how many injuries can be avoided by making the crash less severe, the first chapter focuses on injury modeling. This analysis was based on crashes from 2008 to 2015 which were severe enough that one of the vehicles was towed. This was then filtered down by only looking at crashes where the front or sides were damaged. Then, we compared the outcome (injury as reported by the hospital) to the circumstances (crash severity, age, gender, seat belt use, and others) to develop an estimate for how each of these crash circumstances affected the injury experienced by each driver and front row passenger. A second goal for this chapter was to evaluate whether federal government crash ratings, commonly referred to as “star ratings”, are related to whether the driver and passengers are injured or not. In frontal crashes (where a vehicle hits something going forwards), the star rating does not seem to be related to the injury outcome. In near-side crashes (the side next to the occupant is hit), a higher star rating is better. For frontal crashes, the government test is more extreme than all but a few crashes observed in real life, and this might be why the injury outcomes measured in this study are not related to frontal star rating. Finally, these crash and injury effectiveness values will only ever be achieved if every car has an I-ADAS system. The objective of the third chapter was to evaluate how the crash and injury effectiveness numbers change each year as new cars are purchased and older cars are scrapped. Early on, few cars will have I-ADAS and crashes and injuries will likely still occur at roughly the rate they would without the system. This means that crashes and injuries will continue to increase each year because the United States drives more miles each year. Eventually, as consumers buy new cars and replace older ones, left turn intersection crashes and injuries are predicted to be reduced. Long into the future (around 2050), the increase in crashes caused by miles driven each year outpaces the gains due to new cars with the I-ADAS system, since almost all of the old cars without I-ADAS have been removed from the fleet. In 2025, there will be 173,075 crashes and 15,949 injured persons that could be affected by the I-ADAS system. By 2060, many vehicles will have I-ADAS and there will be 70,439 crashes and 3,836 injuries remaining. Real cars will not have a system identical to the hypothetical I-ADAS system studied here, but systems like it have the potential to significantly reduce crashes and injuries.
Sullivan, James A. „Management of autonomous systems in the Navy's Automated Digital Network System (ADNS)“. Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA341474.
Der volle Inhalt der Quelle"September 1997." Thesis advisor(s): Rex Buddenberg, Suresh Sridhar. Includes bibliographical references (p. 83-84). Also available online.
Dekkiche, Djamila. „Programming methodologies for ADAS applications in parallel heterogeneous architectures“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS388/document.
Der volle Inhalt der QuelleComputer Vision (CV) is crucial for understanding and analyzing the driving scene to build more intelligent Advanced Driver Assistance Systems (ADAS). However, implementing CV-based ADAS in a real automotive environment is not straightforward. Indeed, CV algorithms combine the challenges of high computing performance and algorithm accuracy. To respond to these requirements, new heterogeneous circuits are developed. They consist of several processing units with different parallel computing technologies as GPU, dedicated accelerators, etc. To better exploit the performances of such architectures, different languages are required depending on the underlying parallel execution model. In this work, we investigate various parallel programming methodologies based on a complex case study of stereo vision. We introduce the relevant features and limitations of each approach. We evaluate the employed programming tools mainly in terms of computation performances and programming productivity. The feedback of this research is crucial for the development of future CV algorithms in adequacy with parallel architectures with a best compromise between computing performance, algorithm accuracy and programming efforts
Tang, Zongzhi. „A Novel Road Marking Detection and Recognition Technique Using a Camera-based Advanced Driver Assistance System“. Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35729.
Der volle Inhalt der QuelleMattsson, David. „ADAS : A simulation study comparing two safety improving Advanced Driver Assistance Systems“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85151.
Der volle Inhalt der QuelleSzoltys, Kryštof. „Parametrické CAD systémy a databáze součástí“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217957.
Der volle Inhalt der QuelleJohnson, Gary G. „ADVANCED DATA ACQUISITION AND PROCESSING SYSTEMS (ADAPS)“. International Foundation for Telemetering, 1992. http://hdl.handle.net/10150/608909.
Der volle Inhalt der QuelleFlight testing has dramatically changed from the freewheeling “right-stuff” aviation days of the 40s and 50s. The computer age was just beginning. There was essentially no access to data other than voice and radar tracking information on the ground to monitor the flights. The advent of reliable and effective ground systems for real-time safety monitoring was still in the future. Unfortunately, the lack of these systems played a contributing role in the large number of accidents which killed or injured a significant number of our nation’s pioneer test pilots. As technology evolved, more real-time access to critical safety and performance parameters became available to our flight test engineers on the ground. This technology included sophisticated aircraft instrumentation of key measurements, improved telemetry transmission and reception, and finally, enhanced real-time processing and display of the test data to the engineers. One advantage achieved through these technological advances in testing was a tremendous improvement in flight safety. Although accidents can still happen, today they are very rare thanks, in part, to the ability to accurately monitor and control a test program on the ground. The Advanced Data Acquisition and Processing Systems (ADAPS) program is specifically tailored to meet the needs of test engineers on the ground at the Air Force Flight Test Center (AFFTC) Edwards AFB, California, to monitor a flight through the use of state-of-the-art data acquisition, processing, and display technologies. This paper provides an overall perspective of the requirements for data processing which ADAPS addresses. In addition, the ADAPS design concept, architecture, and development plan are discussed. The purpose is to describe how the ADAPS development effort meets the flight test end user needs of the 1990s. The paper concludes with a section on how we can apply the ADAPS concepts and technology to help equip the multiple Department of Defense (DoD) test centers with a common test data processing capability.
Gaszczak, Anna. „Vision based environment perception system for next generation off-road ADAS : innovation report“. Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/97618/.
Der volle Inhalt der QuelleNassar, Diaa Eldin M. „A prototype automatic dental identification system (ADIS)“. Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=1977.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains v, 72 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 70-72).
Thomas, Robert J. Jr. „Design and implementation of an airborne data collection system with application to precision landing systems (ADCS)“. Ohio University / OhioLINK, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1176237925.
Der volle Inhalt der QuelleGavrilovich, Irina. „Développement d'un système robotique pour des essais au sol du système de contrôle d'attitude et d'orbite d'un CubeSat“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT329/document.
Der volle Inhalt der QuelleAfter the launch of the first artificial Earth satellite in 1957, the evolution of various technologies has fostered the miniaturization of satellites. In 1999, the development of standardized modular satellites with masses limited to a few kilograms, called CubeSats, was initiated by a joint effort of California Polytechnic State University and Stanford University. Since then, CubeSats became a widespread and significant trend, due to a number of available off-the-shelf low cost components.In last years, the number of launched CubeSats constantly grows, but less than half of all CubeSat missions achieved their goals (either partly or completely). The analysis of these failures shows that the most evident cause is a lack of proper component-level and system-level CubeSat testing. An especially challenging task is Hardware-In-the-Loop (HIL) tests of the Attitude Determination and Control System (ADCS). A system devoted to these tests shall offer reliable simulations of the space environment and allow realistic CubeSat motions. The most relevant approach to provide a satellite with such test conditions consists in using air bearing platforms. However, the possible satellite motions are strictly constrained because of geometrical limitations, which are inherent in the air bearing platforms. Despite 15 years of CubeSat history, the list of the air bearing platforms suitable for CubeSat ADCS test is very limited.This thesis is devoted to the design and development of an air bearing testbed for CubeSat ADCS HIL testing. The main novelty of the proposed testbed design consists in using four air bearings instead of one and in utilizing a robotic arm, which allows potentially unconstrained CubeSat motions. Besides the testbed design principle, this thesis deals with the related issues of the determination of the CubeSat orientation by means of contactless measurements, and of the behavior of the air bearings, as well as with the need of a mass balancing method.In order to verify the feasibility of the proposed design, a prototype of the testbed is developed and tested. Several modifications aimed at simplifying the structure and at shortening the fabrication timeline have been made. For this reason, the Adept Viper s650 robot is involved in place of a custom-designed 4DoF robotic arm. A control strategy is proposed in order to provide the robot with a proper motion to follow the CubeSat orientation. Finally, the obtained results are presented and the overall assessment of the proposed testbed is put into perspective
Qiu, Jiaheng. „Performance Analysis and System Modelling of Ethernet-based In Vehicle Communication“. Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207060.
Der volle Inhalt der QuelleSamtidigt som fordonsteknologin ökar snabbt, är det system för avancerad förarassistans (advanced driver assistance systems, ADAS) som står i fokus. Dessa ökande fordonsapplikationer driver på bandbreddskraven, och därför kräver fordonsnätverken högre bandbredd och mer determinisktiska realtidskrav än tidigare.Switchat nätverk (Switched Ethernet) används i alla möjliga applikationer och flyttar gradvis in i fordonsdomänen. Den nya specificationen av standarden IEEE 802.1 Audio/Video Bridging (AVB) tillhandahåller QoS (Quality of Service) funktioner för ADAS dataöverföring.I den här avhandlingen undersöks och analyseras Ethernetbaserad fordonskommunikation av både vanligt nätverk (Ethernet) och AVB Ethernet genom simulering för att verifiera nätverksprestandan för fordonsnätverket i fråga. En systemingenjörsinriktning har använts för att skapa en mer modell-baserad design av simuleringen, som även kan användas för att utveckla prototyper i framtiden.
Cebik, James A., und William J. Connor. „AIRBORNE DATA ACQUISITION SYSTEM FOR THE RAH-66 COMANCHE AIRCRAFT“. International Foundation for Telemetering, 1997. http://hdl.handle.net/10150/609828.
Der volle Inhalt der QuelleThe RAH-66 Comanche flight test program required a state of the art Airborne Data Acquisition System consisting of: 1) A modular distributed system that uses a series of software programmable building blocks capable of signal conditioning all types of sensors. 2) A digital multiplexing system capable of combining various types of digital streams at high rates including Synchronous and Asynchronous PCM, MIL-STD-1553B, and RS-422 data streams. 3) A Data Combiner Unit that accepts synchronous PCM data streams from one to eight sources at 4 MBPS or less and a frame size of up to 8128 words each that outputs four independent PCM streams at 8 MBPS or less and a frame size of up to 16384 words. 4) A Data System Control Unit that controls the tape recorder, serves as the interface to the Pilot’s Control Unit and monitors/reports status of the data acquisition system to the Pilots Control Unit. 5) An Airborne Computer that provides the control and interface to the pilot & copilot instrumentation displays. 6) A Cockpit Instrumentation Pilot Display System consisting of a Main Unit Multi- Function Display, a Load Factor/Hub Moment Display and a Right Wing Flight Control Position Display. The Main Unit Multi-Function Display has the capability to display multiple graphic pages generated by the Airborne Computer. 7) The ability to record high speed avionics buses from the (Mission Equipment Package) MEP such as MIL-STD-1553B, (High Speed Data Bus) HSDB, (Processor Interconnect) PI Bus, (Data Flow Network) DFN and PCM utilizing the Ampex DCRsi-107 Tape Recorder.
DeLooze, Lori L. „ITS Ada : an intelligent tutoring system for the Ada programming language“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28322.
Der volle Inhalt der QuelleMeijer, Max Jan. „Exploring Augmented Reality for enhancing ADAS and Remote Driving through 5G : Study of applying augmented reality to improve safety in ADAS and remote driving use cases“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277857.
Der volle Inhalt der QuelleDenna avhandling består av två projekt med fokus på hur 5G kan användas för att göra fordon säkrare. Det första projektet fokuserar på att konceptualisera användningsfall i närmaste framtid av hur Advanced Driver Assistance Systems (ADAS) kan förbättras genom 5G-teknik. Fyra koncept utvecklades i samarbete med olika branschpartner. Dessa koncept demonstrerade i ett proof-of- concept på 5G Automotive Association (5GAA) “5G Path of Vehicle to to Everything Communication: From Local to Global” -konferensen i Turin, Italien. Detta bevis-of-concept var världens första demonstration av ett sådant system. Det andra projektet fokuserar på ett långt futuristiskt användningsfall, nämligen fjärrstyrning av semi-autonoma fordon (sAVs). Som en del av detta arbete undersöktes det om augmented reality (AR) kan användas för att varna fjärroperatörer om farliga händelser. Det undersöktes om sådana förstärkningar kan användas för att kompensera under kritiska händelser. Dessa händelser definieras som händelser där nätverksförhållandena är suboptimala och information som tillhandahålls till operatören är begränsad. För att utvärdera detta utvecklades en simulatormiljö som använder ögonspårningsteknologi för att studera effekterna av sådana scenarier genom en användarstudie. Simulatorn bildar en utdragbar plattform för framtida arbete. Genom experiment fann man att AR kan vara fördelaktigt när det gäller att upptäcka fara. Men det kan också användas för att direkt påverka skanningsmönstret där operatören tittar på scenen och direkt påverka deras visuella skanningsbeteende.
Hines, Dennis O., Donald C. Rhea und Guy W. Williams. „ADVANCED DATA ACQUISITION AND PROCESSING SYSTEMS (ADAPS) UPDATE“. International Foundation for Telemetering, 1994. http://hdl.handle.net/10150/608546.
Der volle Inhalt der QuelleThe rapid technology growth in the aerospace industry continues to manifest itself in increasingly complex computer systems and weapons systems platforms. To meet the data processing challenges associated with these new weapons systems, the Air Force Flight Test Center (AFFTC) is developing the next generation of data acquisition and processing systems under the Advanced Data Acquisition and Processing Systems (ADAPS) Program. The ADAPS program has evolved into an approach that utilizes Commercial-Off-The-Shelf (COTS) components as the foundation for Air Force enhancements to meet specific customer requirements. The ADAPS program has transitioned from concept exploration to engineering and manufacturing development (EMD). This includes the completion of a detailed requirements analysis and a overall system design. This paper will discuss the current status of the ADAPS program including the requirements analysis process, details of the system design, and the result of current COTS acquisitions.
Ren, Jie. „Quantum Critical Systems from AdS/CFT“. Thesis, Princeton University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3562222.
Der volle Inhalt der QuelleThe AdS/CFT (anti-de Sitter/conformal field theory) correspondence enables us to construct some strongly coupled quantum field theories by means of general relativity, and this approach provides new universality classes of condensed matter systems. In this dissertation, we will consider three systems.
The first system (chapter 2) is the Reissner-Nordstrom (RN)- AdS4 black hole at finite temperature. By solving the Dirac equation for a massive, charged spinor in this background, we find that the fermions have a Rashba-like dispersion relation, and the Fermi surface has a spin-orbit helical locking structure. We use an improved WKB method that takes into account the spin-orbit coupling. The effective potential has a potential well with a barrier. The quasibound states in the potential well can tunnel through the barrier into the horizon, giving an imaginary part to the mode.
The second system (chapter 3) is the two-charge black hole in AdS5 at zero temperature, which gives an analytically solvable model for the holographic Fermi surface. Descending from type IIB supergravity, the two-charge black hole describes N coincident D3-branes with equal, nonzero angular momenta in two of the three independent planes of rotation orthogonal to the D3-brane world volume. The IR geometry of the extremal two-charge black hole is conformal to AdS 2 × [special characters omitted], and the electric field vanishes in the near horizon limit.
The third system (chapter 4) is the extremal RN-AdS 5 black hole, in which quantum criticality is studied by solving the Klein-Gordon equation. The Green's function near quantum critical points is analytically obtained. There are two types of instability: the first one is triggered by a zero mode, and gives a hybridized critical point; the second one is triggered by the instability of the IR geometry, and gives a bifurcating critical point.
Nekkache, Mabrouk. „Système de programmation parallèle OCCAM / ADA“. Lyon, INSA, 1987. http://www.theses.fr/1987ISAL0063.
Der volle Inhalt der QuelleDesigning parallel algorithms involves tricky features, as spitting systems in smaller parallel systems, synchronizing of the components, mutual exclusion on shared variables, all problems due to a view on programming as a scheduling activity rather than a sequencing one. Beyond hardware and theory, parallelism must be a know-how. So we need tools to study and practice. Occam seems a good basis, Ad a a most frequent one. So we have developed a translator from Occam to Ada, written in Ada, and the corresponding running environment. More than being a tool for study and practice parallel algorithms, first experiences suggest using tool as a practical mean of specify in Occam real-time later produced in Ada
Jazaa, Abid Thyab. „Computer-aided mangement of ADA systems“. Thesis, Keele University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314465.
Der volle Inhalt der QuelleThomas, Robert J. „Design and implementation of an airborne data collection system with application to precision landing systems (ADCS)“. Ohio : Ohio University, 1993. http://www.ohiolink.edu/etd/view.cgi?ohiou1176237925.
Der volle Inhalt der QuelleJeswani, Sapna D. „ADSS a web-based agroforestry decision support system /“. [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000709.
Der volle Inhalt der QuelleKegel, Thomas, und Bruce Lipe. „THE ADAPS REAL-TIME / POST FLIGHT PROCESSING SYSTEM“. International Foundation for Telemetering, 1999. http://hdl.handle.net/10150/607324.
Der volle Inhalt der QuelleThis paper describes the Real-Time/Post-Flight Processing System (RT/PFP) developed under the Air Force Flight Test Center (AFFTC) Advanced Data Acquisition and Processing Systems (ADAPS) development program. The RT/PFP is currently being deployed at all Range Division Mission Control Facilities as the principal Range Division telemetry processing system. This paper provides an overview of the RT/PFP system, its current capabilities, and future enhancements being developed. The RT/PFP is currently used to support the F-22 flight test program, and to provide telemetry processing support for the AFFTC Range Safety Office. The RT/PFP is also used in a mobile configuration to support the Advanced Fighter Technology Integration program.
Bai, Yunhao. „WiFi-Based Driver Activity Recognition Using CSI Signal“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1604876348378883.
Der volle Inhalt der QuelleStoddart, Evan. „Computer Vision Techniques for Automotive Perception Systems“. The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555357244145006.
Der volle Inhalt der QuelleWessman, Richard R. „Ada and the graphical kernel system /“. Online version of thesis, 1988. http://hdl.handle.net/1850/10624.
Der volle Inhalt der QuelleNtsimane, M. H. (Mpho Hendrick). „The attitude determination and control systems (ADCS) task scheduler“. Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52487.
Der volle Inhalt der QuelleENGLISH ABSTRACT: A new task scheduler for the Attitude Determination and Control System (ADCS) of the Stellenbosch University Satellite (SUNSAT) has been designed and tested on a personal computer. This new scheduler is capable of uploading new control tasks, or changing existing control tasks, on an individual basis. This is an improvement on the current ADCS task scheduler, where the control tasks are hard-coded in the scheduler, requiring the entire software image of the scheduler to be uploaded if a new task is to be added, or an existing task is to be changed. The new scheduler was developed using the Java programming language. The Java ClassLoader class is used to dynamically load tasks to a linked list. The scheduler thread runs through this linked list and schedules all the tasks that have become schedulable. New tasks can be added to the list without stopping the scheduler. The new scheduler has been successfully implemented on a personal computer, laying a good foundation for implementation in an embedded environment based on processors such as the T800 Transputer of the ADCS or the 80386 processor of the secondary onboard computer (OBC2).
AFRIKAANSE OPSOMMING: 'n Nuwe taak skeduleerder vir die orientasie beheerstelsel (Engels: Attitude Determination and Control System, of ADCS) van die Stellenbosch Universiteit Satelliet (SUNSAT) is ontwerp en getoets op 'n persoonlike rekenaar. Hierdie nuwe skeduleerder het die verrnoee om ekstra beheertake op te laai, of bestaande beheertake te wysig, onafhanklik van mekaar. Dit is 'n verbetering op die huidige ADCS taak skeduleerder waar take hard gekodeer is in die skeduleerder en waar vereis word dat die volledige sagteware beeld van die skeduleerder opgelaai moet word indien 'n nuwe taak bygevoeg wil word of 'n bestaande taak gewysig wil word. Die nuwe skeduleerder is ontwikkel met behulp van die Java programmeringstaal. Die Java C/assLoader klas is gebruik om take dinamies te laai en te voeg by 'n skakellys. Die skeduleerder proses stap dan deur hierdie skakellys en skeduleer aile take wat skeduleerbaar geword het. Nuwe take kan by die skakellys gevoeg word sonder om die skeduleerder te stop. Die nuwe skeduleerder is suksesvol ge'lmplementeer op 'n persoonlike rekenaar en Ie 'n goeie grondslag vir implementering in 'n toegewyde stelsel omgewing gebaseer op byvoorbeeld die T800 Transputer van die ADCS of die 80386 verwerker van die sekondere aanboord rekenaar (OBC2).
Homann, Leschek Adam [Verfasser], und Gottfried [Akademischer Betreuer] Vossen. „Benchmarking recommender systems / Leschek Adam Homann ; Betreuer: Gottfried Vossen“. Münster : Universitäts- und Landesbibliothek Münster, 2021. http://d-nb.info/1238690076/34.
Der volle Inhalt der QuelleLu, Shuxian. „Modélisation et validation expérimentale de concept de Détection Vidéo Coopérative destiné à un système stéréo anticollision inter-véhicule“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112154/document.
Der volle Inhalt der QuelleThis thesis was devoted to the development of a new detection method for vehicular collision avoidance system based on trajectory measurement, which could contribute to driver assistance systems.In order to obtain high detection probability, we have chosen the cooperative stereoscopic video solution: the cooperation between vehicles makes it easier and more reliable when they aim to detect each other. There are two participants in the system: the “system carriers" vehicles, or the " followers" are equipped with stereoscopic cameras (two image sensors), who belong to high speed technology families; the "targets" vehicles are equipped with modulated LED lights, with the modulation frequency being already known by the "followers". After space-time filtering, the system detects the signals emitted bymodulated lights sources, which greatly reduces the amount of information to be processed comparing to traditional trajectory calculations methods. The detection of modulated light is achieved by filtering based on digital image processing, which is adapted to the desired modulation frequency. We have proposed three types of filters suitable for detecting the modulation at this frequency and at the same time for rejecting the background as well as possible.In order to be able to evaluate the performances of both detecting signals and rejecting false alarms, we first performed numerical simulations based on the model signals, then calculations on real signals acquired in static and driving experiments. The tested speeds were from 30km/h up to 100km/h, which allowed us to analyze the signals emitted from vehicle lights as well as the behavior of our filters under different angular velocities of the lights (zero, low and high). The result of these experiments showed that our method of filtering could detect LED-type DRL lights up to 140m without any false alarm. This is essential to define more precisely the values of thresholds of such systems. We have also evaluated technologies that are possible to improve system performance in the future, which are not yet ready to be used in industry productions. For example, artificial "retinas" could allow us to integrate analog filters in the chips, and thus to reduce bandwidth of the filters
Lin, Ying-Hsuan S. B. Massachusetts Institute of Technology. „Applying AdS/CFT to many body systems“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61259.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 49).
In this thesis, we model a many body system by a conformal field theory, and calculate the correlation function of a scalar operator in this theory using the AdS/CFT correspondence. We describe numerical techniques for calculating the retarded Green function of the operator. The results suggest that further improvement in the robustness of the codes is needed.
by Ying-Hsuan Lin.
S.B.
Balasubramanian, ArunKumar. „Benchmarking of Vision-Based Prototyping and Testing Tools“. Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-229999.
Der volle Inhalt der QuelleSallez, Yves. „Conception d'un système de programmation hors ligne de cellules robotisées intégrant le langage ADA“. Valenciennes, 1988. https://ged.uphf.fr/nuxeo/site/esupversions/3941307a-1d5e-4e41-8bd2-65df2a934515.
Der volle Inhalt der QuelleGerónimo, Gómez David. „A Global Approach to Vision-Based Pedestrian Detection for Advanced Driver Assistance Systems“. Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/5795.
Der volle Inhalt der QuelleAt the beginning of the 21th century, traffic accidents have become a major problem not only for developed countries but also for emerging ones. As in other scientific areas in which Artificial Intelligence is becoming a key actor, advanced driver assistance systems, and concretely pedestrian protection systems based on Computer Vision, are becoming a strong topic of research aimed at improving the safety of pedestrians. However, the challenge is of considerable complexity due to the varying appearance of humans (e.g., clothes, size, aspect ratio, shape, etc.), the dynamic nature of on-board systems and the unstructured moving environments that urban scenarios represent. In addition, the required performance is demanding both in terms of computational time and detection rates. In this thesis, instead of focusing on improving specific tasks as it is frequent in the literature, we present a global approach to the problem. Such a global overview starts by the proposal of a generic architecture to be used as a framework both to review the literature and to organize the studied techniques along the thesis. We then focus the research on tasks such as foreground segmentation, object classification and refinement following a general viewpoint and exploring aspects that are not usually analyzed. In order to perform the experiments, we also present a novel pedestrian dataset that consists of three subsets, each one addressed to the evaluation of a different specific task in the system. The results presented in this thesis not only end with a proposal of a pedestrian detection system but also go one step beyond by pointing out new insights, formalizing existing and proposed algorithms, introducing new techniques and evaluating their performance, which we hope will provide new foundations for future research in the area.
Malinský, Marek. „Namáhání ojnice v multi-body systému“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-228976.
Der volle Inhalt der QuelleHeywood, James K. „AUTOMATED TESTING OF THE ADVANCED DATA ACQUISITION AND PROCESSING SYSTEM“. International Foundation for Telemetering, 2001. http://hdl.handle.net/10150/606456.
Der volle Inhalt der QuelleSoftware and techniques are described for testing the Advanced Data Acquisition and Processing System (ADAPS), the primary flight test telemetry system used at Edwards AFB, California. The software described acts as an additional simulation capability and moves the simulation definition process into a realm where data is formed by means of a high-order language. The potential for creation of more sophisticated simulated test data is thus enabled. Extension of the techniques described in this paper to applications other than testing is discussed.
Young, Callum A. „Local structure/property relationships in functional materials“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8eea6d96-5a48-4ed9-adad-e2b1fdc97acb.
Der volle Inhalt der QuelleLindberg, David. „MSC Adams modelling of mechanical system in A400M Crew Entrance Door“. Thesis, Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78100.
Der volle Inhalt der QuelleEmanuelsson, Kajsa. „Examining factors for low use behavior of Advanced Driving Assistance Systems“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166400.
Der volle Inhalt der QuelleAdvanced Driving Assistance Systems (ADAS) har potential att förhindra antalet dödsfall i trafiken. Det förekommer att förare som har systemen i sin bil, väljer bort att använda dem. Syftet med den här uppsatsen var att undersöka underliggande orsaker och faktorer till låg användningsgrad av ADAS. Uppsatsen består av två studier. Studie I är en explorativ intervjustudie med tio förare som hade bilar med ADAS. Målet med Studie I var att ringa in de möjliga bakomliggande faktorerna för låg användningsgrad av ADAS. Resultaten från Studie I användes för att utforma en enkätstudie till Studie II som var riktad till förare som hade bilar med förarstödsystemen adaptiv farthållare och körfältsassistans (N = 49). Resultaten pekar på att de underliggande orsakerna och faktorerna beror på vilken ADAS som avses samt vilket användargrupp föraren tillhör. Några underliggande faktorer för låg användingsgruppen tycks vara känsla av att behöva övervaka fordonet samt lägre grad av tilltro till den egna förmågan än vad höganvändingsgrupper rapporterade.
Furmanik, Olga, und Alireza Famili. „Control system integration in ADAMS : With emphasis on hauler Automatic Traction Control system“. Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-45957.
Der volle Inhalt der QuelleHafner, F. W. (Bill). „Advanced Data Acquisition and Processing System (ADAPS) – The Current State of the System“. International Foundation for Telemetering, 1999. http://hdl.handle.net/10150/607323.
Der volle Inhalt der QuelleThe technology growth in the Aerospace industry, as manifested and embodied in the current fighter technology, presents many challenges in the area of flight test and data processing. Past papers have delineated the concepts brought to bear in the design and implementation of the AFFTC’s latest generation of telemetry data systems in the Advanced Data Acquisition and Processing System (ADAPS) program. The current deployed system incorporates the planned approach of commercial-off-the-shelf (COTS) and government-off-the-shelf (GOTS) elements as basic to the system solution. The state of the program has advanced through full development, delivery and performance testing. The system is currently deployed in support of flight testing at Edwards AFB. This paper will present the status of the program.
Al-Qaed, Faisal. „An adaptive decision support system (adss) for B2C e-commerce“. Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488763.
Der volle Inhalt der QuelleWilde, James Ronald. „Experimental Evaluation and Adams Simulation of the Kinetic Suspension System“. The Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=osu1363865765.
Der volle Inhalt der QuelleBotma, Pieter Johannes. „The design and development of an ADCS OBC for a CubeSat“. Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18040.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The Electronic Systems Laboratory at Stellenbosch University is currently developing a fully 3-axis controlled Attitude Determination and Control Subsystem (ADCS) for CubeSats. This thesis describes the design and development of an Onboard Computer (OBC) suitable for ADCS application. A separate dedicated OBC for ADCS purposes allows the main CubeSat OBC to focus only on command and data handling, communication and payload management. This thesis describes, in detail the development process of the OBC. Multiple Microcontroller Unit (MCU) architectures were considered before selecting an ARM Cortex-M3 processor due to its performance, power efficiency and functionality. The hardware was designed to be as robust as possible, because radiation tolerant and redundant components could not be included, due to their high cost and the technical constraints of a CubeSat. The software was developed to improve recovery from lockouts or component failures and to enable the operational modes to be configured in real-time or uploaded from the ground station. Ground tests indicated that the OBC can handle radiation-related problems such as latchups and bit-flips. The peak power consumption is around 500 mW and the orbital average is substantially lower. The proposed OBC is therefore not only sufficient in its intended application as an ADCS OBC, but could also stand in as a backup for the main OBC in case of an emergency.
AFRIKAANSE OPSOMMING: Die Elektroniese Stelsels Laboratorium by die Universiteit van Stellenbosch is tans besig om ’n volkome 3-as gestabiliseerde oriëntasiebepaling en -beheerstelsel (Engels: ADCS) vir ’n CubeSat te ontwikkel. Hierdie tesis beskryf die ontwerp en ontwikkeling van ’n aanboordrekenaar (Engels: OBC) wat gebruik kan word in ’n ADCS. ’n Afsonderlike OBC wat aan die ADCS toegewy is, stel die hoof-OBC in staat om te fokus op beheer- en datahantering, kommunikasie en loonvragbestuur. Hierdie tesis beskryf breedvoerig die werkswyse waarvolgens die OBC ontwikkel is. Verskeie mikroverwerkers is as moontlike kandidate ondersoek voor daar op ’n ARM Cortex-M3-gebaseerde mikroverwerker besluit is. Hierdie mikroverwerker is gekies vanweë sy spoed, effektiewe kragverbruik en funksionaliteit. Die hardeware is ontwikkel om so robuust moontlik te wees, omdat stralingbestande en oortollige komponente weens kostebeperkings, asook tegniese beperkings van ’n CubeSat, nie ingesluit kon word nie. Die programmatuur is ontwikkel om van ’n uitsluiting en ’n komponentfout te kan herstel. Verder kan programme wat tydens vlug in werking is, verstel word en vanaf ’n grondstasie gelaai word. Grondtoetse het aangedui dat die OBC stralingverwante probleme, soos ’n vergrendeling (latchup) of bis-omkering (bit-flip), kan hanteer. Die maksimum kragverbruik is ongeveer 500 mW en die gemiddelde wentelbaankragverbruik is beduidend kleiner. Die voorgestelde OBC is dus voldoende as ADCS OBC asook hoof-OBC in geval van nood.