Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „ADAS systémy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "ADAS systémy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "ADAS systémy"
Mahmudur Rahman, Md, Lesley Strawderman und Daniel W. Carruth. „Effect of Driving Contexts on Driver Acceptance of Advanced Driver Assistance Systems“. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 61, Nr. 1 (September 2017): 1944–48. http://dx.doi.org/10.1177/1541931213601965.
Der volle Inhalt der QuelleDavoli, Luca, Marco Martalò, Antonio Cilfone, Laura Belli, Gianluigi Ferrari, Roberta Presta, Roberto Montanari et al. „On Driver Behavior Recognition for Increased Safety: A Roadmap“. Safety 6, Nr. 4 (12.12.2020): 55. http://dx.doi.org/10.3390/safety6040055.
Der volle Inhalt der QuelleOrlovska, J., C. Wickman und R. Soderberg. „THE USE OF VEHICLE DATA IN ADAS DEVELOPMENT, VERIFICATION AND FOLLOW-UP ON THE SYSTEM“. Proceedings of the Design Society: DESIGN Conference 1 (Mai 2020): 2551–60. http://dx.doi.org/10.1017/dsd.2020.322.
Der volle Inhalt der QuelleMassow, Kay, und Ilja Radusch. „A Rapid Prototyping Environment for Cooperative Advanced Driver Assistance Systems“. Journal of Advanced Transportation 2018 (2018): 1–32. http://dx.doi.org/10.1155/2018/2586520.
Der volle Inhalt der QuelleOviedo-Trespalacios, Oscar, Jennifer Tichon und Oliver Briant. „Is a flick-through enough? A content analysis of Advanced Driver Assistance Systems (ADAS) user manuals“. PLOS ONE 16, Nr. 6 (17.06.2021): e0252688. http://dx.doi.org/10.1371/journal.pone.0252688.
Der volle Inhalt der QuelleClassen, Sherrilene, Mary Jeghers, Jane Morgan-Daniel, Sandra Winter, Luther King und Linda Struckmeyer. „Smart In-Vehicle Technologies and Older Drivers: A Scoping Review“. OTJR: Occupation, Participation and Health 39, Nr. 2 (22.02.2019): 97–107. http://dx.doi.org/10.1177/1539449219830376.
Der volle Inhalt der QuelleLedezma, Agapito, Víctor Zamora, Óscar Sipele, M. Paz Sesmero und Araceli Sanchis. „Implementing a Gaze Tracking Algorithm for Improving Advanced Driver Assistance Systems“. Electronics 10, Nr. 12 (19.06.2021): 1480. http://dx.doi.org/10.3390/electronics10121480.
Der volle Inhalt der QuelleЕлисеев, Н. „СИСТЕМЫ ADAS – УДОБСТВО И БЕЗОПАСНОСТЬ“. ELECTRONICS: SCIENCE, TECHNOLOGY, BUSINESS 203, Nr. 2 (22.03.2021): 102–7. http://dx.doi.org/10.22184/1992-4178.2021.203.2.102.107.
Der volle Inhalt der QuelleAbraham, Hillary, Bryan Reimer und Bruce Mehler. „Learning to Use In-Vehicle Technologies: Consumer Preferences and Effects on Understanding“. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 62, Nr. 1 (September 2018): 1589–93. http://dx.doi.org/10.1177/1541931218621359.
Der volle Inhalt der QuelleNylen, Ashley B., Michelle L. Reyes, Cheryl A. Roe und Daniel V. McGehee. „Impacts on Driver Perceptions in Initial Exposure to ADAS Technologies“. Transportation Research Record: Journal of the Transportation Research Board 2673, Nr. 10 (18.05.2019): 354–60. http://dx.doi.org/10.1177/0361198119847975.
Der volle Inhalt der QuelleDissertationen zum Thema "ADAS systémy"
Pieger, Matúš. „Sledování řidiče“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442532.
Der volle Inhalt der QuelleRobinson, J. „ADDS : An Ada dialogue development system“. Thesis, University of Bradford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374926.
Der volle Inhalt der QuelleAgha, Jafari Wolde Bahareh. „A systematic Mapping study of ADAS and Autonomous Driving“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42754.
Der volle Inhalt der QuelleNos, Pavel. „Využití průmyslového senzorového systému ADAM pro laboratorní měření“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217288.
Der volle Inhalt der QuelleMartinez, Leandro Andrade. „Um framework para coprojeto de hardware e software de sistemas avançados de assistência ao motorista baseados em câmeras“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06122017-104613/.
Der volle Inhalt der QuelleThe demand for new technologies, enhanced security and comfort for urban cars has grown considerably in recent years prompting the industry to create systems designed to support drivers (ADAS - Advanced Driver Assistance Systems). This fact contributed to the development of many embedded systems in the automotive area among them, the pedestrians collision avoidance. Through the advancement in various research, began circulating through the streets vehicles with anti-collision systems and autonomous navigation. However, to achieve ever more challenging goals, designers need tools to unite technology and expertise from different areas efficiently. In this context, there is a demand for building systems that increase the level of abstraction of models of image processing for use in embedded systems enabling better design space exploration. To help minimize this problem, this research demonstrates a develop a specific framework for hardware/software codesign to build ADAS systems using computer vision. The framework aims to facilitate the development of applications, allowing better explore the design space, and thus contribute to a performance gain in the development of embedded systems in relation to building entirely in hardware. One of the requirements of the project is the possibility of the simulation of an application before synthesis on a reconfigurable system. The main challenges of this system were related to the construction of the intercommunication system between the various Intellectual Property (IP) blocks and the software components, abstracting from the end user numerous hardware details, such as memory management, interruptions, cache, types (Floating point, fixed point, integers) and so on, enabling a more user-friendly system for the designer.
Joubert, Damien. „Conception pour le véhicule autonome et les applications ADAS sécuritaires d'un système vidéo ADAS coopératif à base de rétines CMOS“. Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC045.
Der volle Inhalt der QuelleThe perception by monocular vision is an issue not solved yet. While a competition exists between many companies and huge investments were raised, the expected level of performance to autonomous driving is still not reached. Even if some advanced driving assistance systems functionalities make the driver believe that he can be less focused, it is not the case in practice and the responsibility is still based on its shoulder. This work aims at building a robust front vision system combining two modalities, thanks to the use of an artificial CMOS retina, or an event-based sensor, whose pixels can detect and timestamp positive or negative relative changes of illuminance. The frequency of data acquisition depends on the kinetic of the scene which could vary a lot in automotive scenarios. The two modalities extracted from the sensor are on one side conventional image processing algorithms, and on the other side the detection of light signals emitted by targets, modulated with high frequencies and characterizing the state or the orientation of the object. This work firstly aims at measuring CMOS retinas parameters, in order to design a simulation model and also to determine how the parameters evolve when facing automotive constraints. This step is articulated around the design of a characterization setup and the implementation of a sensor modelusing the measurements realized on the characterization setup. This latter also enables to quantify the performances achieved by the algorithms which detect modulated light signals, to check that each detection corresponds to the good cooperative signal and enable to optimize the sensor’s response to the range of frequencies used. The detection is demonstrated on simulation experiments and on a prototype, with a scope of 150 meters using a frequency equal to 5 kHz. The algorithms proposed in this work allow to keep the asynchronous characteristic of the data stream. The limitations of the technology have been identified to realize signal’s detection, and an attention can be provided to the next generations of CMOS retinas. In parallel, a detection and classification method based on convolutional neural networks is implemented. It consists of the creation of artificial images by integrating events over time, and to apply a transfer learning technique with a network trained on conventional images, made possible using dedicated data augmentation strategies to avoid overlearning. This network is then used to initialized tracking functions to determine the time to collision. This step uses the asynchronous advantage of event-based data, byestimating the movement locally through the computation of the optical flow. The simulation model of the sensor allows to test some algorithms and to evaluate the performance as a function of sensor’s parameters like the latency or the background noise. A prototype is set on test tracks to demonstrate that event-based tracking is much more efficient than image-based tracking. Finally, some attempts are tested to fuse the two modalities, and illustrate that the positioning of the target emitting the cooperative signal is complicated to manage without using the content of the conventional image. However, the classification and the tracking of the objects is improved in some cases thanks to the cooperative signal, which removes the density of a scene to be more focused on targets. This work, between sensors and algorithms, demonstrate how a cooperative vision system can be inserted into the perception function of autonomous vehicles to guarantee an optimal level of performances
Jeon, Dae Kyung. „Methodologies for developing distributed systems in Ada with a simulation of a distributed Ada system“. Virtual Press, 1989. http://liblink.bsu.edu/uhtbin/catkey/722459.
Der volle Inhalt der QuelleDepartment of Computer Science
Aziz, Tabinda. „Empirical Analyses of Human-Machine Interactions focusing on Driver and Advanced Driver Assistance Systems“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/195975.
Der volle Inhalt der QuelleBareiss, Max. „Effectiveness of Intersection Advanced Driver Assistance Systems in Preventing Crashes and Injuries in Left Turn Across Path / Opposite Direction Crashes in the United States“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/96570.
Der volle Inhalt der QuelleM.S.
Future vehicles will have electronic systems that can avoid crashes in some cases where a human driver is unable, unaware, or reacts insufficiently to avoid the crash without assistance. The objective of this work was to determine, on a national scale, how many crashes and injuries could be avoided due to Intersection Advanced Driver Assistance Systems (I-ADAS), a hypothetical version of one of these up-and-coming systems. This work focused on crashes where one car is turning left at an intersection and the other car is driving through the intersection and not turning. The I-ADAS system has sensors which continuously search for other vehicles. When the I-ADAS system determines that a crash may happen, it applies the brakes or otherwise alerts the driver to apply the brakes. Rather than conduct actual crash tests, this was simulated on a computer for a large number of variations of the I-ADAS system. The basis for the simulations was real crashes that happened from 2005 to 2007 across the United States. The variations that were simulated changed the time at which the I-ADAS system triggered the brakes (or alert) and the simulated amount of computer time required for the I-ADAS system to make a choice. In some turning crashes, the car cannot see the other vehicle because of obstructions, such as a line of people waiting to turn left across the road. Because of this, simulations were conducted both with and without the visual obstruction. For comparison, we performed a simulation of the original crash as it happened in real life. Finally, since there are two cars in each crash, there are simulations when either car has the I-ADAS system or when both cars have the I-ADAS system. Each simulation either ends in a crash or not, and these are tallied up for each system variation. The number of crashes avoided compared to the number of simulations run is crash effectiveness. Crash effectiveness ranged from 1% to 84% based on the system variation. For each crash that occurred, there is another simulation of the time immediately after impact to determine how severe the impact was. This is used to determine how many injuries are avoided, because often the crashes which still happened were made less severe by the I-ADAS system. In order to determine how many injuries can be avoided by making the crash less severe, the first chapter focuses on injury modeling. This analysis was based on crashes from 2008 to 2015 which were severe enough that one of the vehicles was towed. This was then filtered down by only looking at crashes where the front or sides were damaged. Then, we compared the outcome (injury as reported by the hospital) to the circumstances (crash severity, age, gender, seat belt use, and others) to develop an estimate for how each of these crash circumstances affected the injury experienced by each driver and front row passenger. A second goal for this chapter was to evaluate whether federal government crash ratings, commonly referred to as “star ratings”, are related to whether the driver and passengers are injured or not. In frontal crashes (where a vehicle hits something going forwards), the star rating does not seem to be related to the injury outcome. In near-side crashes (the side next to the occupant is hit), a higher star rating is better. For frontal crashes, the government test is more extreme than all but a few crashes observed in real life, and this might be why the injury outcomes measured in this study are not related to frontal star rating. Finally, these crash and injury effectiveness values will only ever be achieved if every car has an I-ADAS system. The objective of the third chapter was to evaluate how the crash and injury effectiveness numbers change each year as new cars are purchased and older cars are scrapped. Early on, few cars will have I-ADAS and crashes and injuries will likely still occur at roughly the rate they would without the system. This means that crashes and injuries will continue to increase each year because the United States drives more miles each year. Eventually, as consumers buy new cars and replace older ones, left turn intersection crashes and injuries are predicted to be reduced. Long into the future (around 2050), the increase in crashes caused by miles driven each year outpaces the gains due to new cars with the I-ADAS system, since almost all of the old cars without I-ADAS have been removed from the fleet. In 2025, there will be 173,075 crashes and 15,949 injured persons that could be affected by the I-ADAS system. By 2060, many vehicles will have I-ADAS and there will be 70,439 crashes and 3,836 injuries remaining. Real cars will not have a system identical to the hypothetical I-ADAS system studied here, but systems like it have the potential to significantly reduce crashes and injuries.
Sullivan, James A. „Management of autonomous systems in the Navy's Automated Digital Network System (ADNS)“. Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA341474.
Der volle Inhalt der Quelle"September 1997." Thesis advisor(s): Rex Buddenberg, Suresh Sridhar. Includes bibliographical references (p. 83-84). Also available online.
Bücher zum Thema "ADAS systémy"
Ropper, Allan H. Adams and Victor's principles of neurology. 8. Aufl. New York: McGraw-Hill Medical Pub. Division, 2005.
Den vollen Inhalt der Quelle finden1911-, Adams Raymond D., Victor Maurice 1920-, Brown Robert H. 1947- und Victor Maurice 1920-, Hrsg. Adams and Victor's principles of neurology. 8. Aufl. New York: McGraw-Hill Medical Pub. Division, 2005.
Den vollen Inhalt der Quelle finden1911-, Adams Raymond D., Victor Maurice 1920-, Samuels Martin A und Ropper Allan H, Hrsg. Adams and Victor's principles of neurology. 9. Aufl. New York: McGraw-Hill Medical, 2009.
Den vollen Inhalt der Quelle findenScharf, Peter. Learning together with Adam: A family guide to using the Coleco Adam personal computer system. New York: McGraw-Hill, 1985.
Den vollen Inhalt der Quelle findenA system of social science: Papers relating to Adam Smith. 2. Aufl. Oxford: Clarendon Press, 1996.
Den vollen Inhalt der Quelle findenTrevor, Moreton, und Natali Antonio, Hrsg. Ada for distributed systems. Cambridge: Cambridge University Press, 1988.
Den vollen Inhalt der Quelle findenPractical visual techniques in system design: With applications to Ada. Englewood Cliffs, NJ: Prentice Hall, 1990.
Den vollen Inhalt der Quelle findenThe Ada primer: An introduction to the Ada language system. New York: McGraw-Hill, 1985.
Den vollen Inhalt der Quelle findenJames, Alinder, Hrsg. Ansel Adams. Milan: IdeaBooks, 1986.
Den vollen Inhalt der Quelle findenRichard, Wrigley, Hrsg. Ansel Adams. New York, N.Y: Smithmark, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "ADAS systémy"
Klanner, Felix, und Christian Ruhhammer. „Backend Systems for ADAS“. In Handbook of Driver Assistance Systems, 685–700. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12352-3_29.
Der volle Inhalt der QuelleKlanner, Felix, und Christian Ruhhammer. „Backend Systems for ADAS“. In Handbook of Driver Assistance Systems, 1–12. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09840-1_29-1.
Der volle Inhalt der QuelleGehrig, Stefan, und Uwe Franke. „Stereovision for ADAS“. In Handbook of Driver Assistance Systems, 495–524. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12352-3_22.
Der volle Inhalt der QuelleWinner, Hermann. „ADAS, Quo Vadis?“ In Handbook of Driver Assistance Systems, 1557–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12352-3_62.
Der volle Inhalt der QuelleGehrig, Stefan, und Uwe Franke. „Stereovision for ADAS“. In Handbook of Driver Assistance Systems, 1–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09840-1_22-1.
Der volle Inhalt der QuelleWinner, Hermann. „ADAS, Quo Vadis?“ In Handbook of Driver Assistance Systems, 1–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09840-1_62-1.
Der volle Inhalt der QuelleKleine-Besten, Thomas, Ralph Behrens, Werner Pöchmüller und Andreas Engelsberg. „Digital Maps for ADAS“. In Handbook of Driver Assistance Systems, 647–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12352-3_27.
Der volle Inhalt der QuelleKleine-Besten, Thomas, Ralph Behrens, Werner Pöchmüller und Andreas Engelsberg. „Digital Maps for ADAS“. In Handbook of Driver Assistance Systems, 1–11. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09840-1_27-1.
Der volle Inhalt der QuelleNg, Tian Seng. „ADAS in Autonomous Driving“. In Robotic Vehicles: Systems and Technology, 87–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6687-9_12.
Der volle Inhalt der QuelleDimitrakopoulos, George. „Advanced Driver Assistance Systems (ADAS)“. In Current Technologies in Vehicular Communication, 63–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47244-7_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "ADAS systémy"
Ahadi-Sarkani, Armand, und Salma Elmalaki. „ADAS-RL“. In CPS-IoT Week '21: Cyber-Physical Systems and Internet of Things Week 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3458648.3460008.
Der volle Inhalt der QuelleRaviteja, S., und R. Shanmughasundaram. „Advanced Driver Assitance System (ADAS)“. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2018. http://dx.doi.org/10.1109/iccons.2018.8663146.
Der volle Inhalt der QuellePeng, Jinzhang, Lu Tian, Xijie Jia, Haotian Guo, Yongsheng Xu, Dongliang Xie, Hong Luo, Yi Shan und Yu Wang. „Multi-task ADAS system on FPGA“. In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2019. http://dx.doi.org/10.1109/aicas.2019.8771615.
Der volle Inhalt der QuelleChalmers, I. J. „User attitudes to automated highway systems“. In International Conference on Advanced Driver Assistance Systems (ADAS). IEE, 2001. http://dx.doi.org/10.1049/cp:20010489.
Der volle Inhalt der QuelleSenior, C. J. D. „Telematics systems from the service perspective“. In International Conference on Advanced Driver Assistance Systems (ADAS). IEE, 2001. http://dx.doi.org/10.1049/cp:20010491.
Der volle Inhalt der QuelleKees, M. „Hydraulic actuated brake and electromechanically actuated brake systems“. In International Conference on Advanced Driver Assistance Systems (ADAS). IEE, 2001. http://dx.doi.org/10.1049/cp:20010495.
Der volle Inhalt der QuelleHafner, M. R., K. So Zhao, A. Hsia und Z. Rachlin. „Localization tools for benchmarking ADAS control systems“. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2016. http://dx.doi.org/10.1109/smc.2016.7844642.
Der volle Inhalt der QuelleZiebinski, Adam, Rafal Cupek, Damian Grzechca und Lukas Chruszczyk. „Review of advanced driver assistance systems (ADAS)“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012394.
Der volle Inhalt der QuelleHaja, Andreas, Carsten Koch und Lars Klitzke. „The ADAS SWOT Analysis - A Strategy for Reducing Costs and Increasing Quality in ADAS Testing“. In 3rd International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006354103200325.
Der volle Inhalt der QuelleCaruso, Giandomenico, Daniele Ruscio, Dedy Ariansyah und Monica Bordegoni. „Driving Simulator System to Evaluate Driver’s Workload Using ADAS in Different Driving Contexts“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67850.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "ADAS systémy"
Waraniak, John. Unsettled Issues on Sensor Calibration for Automotive Aftermarket Advanced Driver-Assistance Systems. SAE International, März 2021. http://dx.doi.org/10.4271/epr2021008.
Der volle Inhalt der QuelleKerrigan, W. Analytical Data Management System (ADMS). Office of Scientific and Technical Information (OSTI), Mai 1987. http://dx.doi.org/10.2172/6845581.
Der volle Inhalt der QuelleRazdan, Rahul. Unsettled Topics Concerning Human and Autonomous Vehicle Interaction. SAE International, Dezember 2020. http://dx.doi.org/10.4271/epr2020025.
Der volle Inhalt der QuelleRisko, Theodore. Avionics Diagnostic System (ADS). Fort Belvoir, VA: Defense Technical Information Center, Juni 1999. http://dx.doi.org/10.21236/ada368423.
Der volle Inhalt der QuelleStouffer, Keith, Robert Jr Russell, Raymond Archacki, Thomas Engel, Richard Dansereau und Arnold Grot. Advanced Deburring and Chamfering System (ADACS):. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5915.
Der volle Inhalt der QuelleWelderman, Nelson H., Neal Altman, Mark Borger, Patrick Donohoe, William E. Hefley, Mark H. Klein, Stephan F. Landherr, Hans Mumm und John A. Slusrz. Ada Embedded Systems Testbed Project. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1987. http://dx.doi.org/10.21236/ada200609.
Der volle Inhalt der QuelleRussell, Bob, und Fred Proctor. ADACS - an automated system for part finishing. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5171.
Der volle Inhalt der QuelleStevens, B. W. Distributed Ada Programs on Heterogeneous Systems. Fort Belvoir, VA: Defense Technical Information Center, März 1991. http://dx.doi.org/10.21236/ada294848.
Der volle Inhalt der QuelleByrnes, C. M. Ada and X Window System Integration. Fort Belvoir, VA: Defense Technical Information Center, Januar 1992. http://dx.doi.org/10.21236/ada246667.
Der volle Inhalt der QuelleKnapper, Robert J., und David O. LeVan. A Portable Ada Multitasking Analysis System. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1988. http://dx.doi.org/10.21236/ada227594.
Der volle Inhalt der Quelle