Zeitschriftenartikel zum Thema „Active structures“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Active structures.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Active structures" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Soong, T. T., und G. D. Manolis. „Active Structures“. Journal of Structural Engineering 113, Nr. 11 (November 1987): 2290–302. http://dx.doi.org/10.1061/(asce)0733-9445(1987)113:11(2290).

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pantelides, C. P., und S. R. Tzan. „Active structures with uncertainties“. International Journal of Computer Applications in Technology 13, Nr. 1/2 (2000): 59. http://dx.doi.org/10.1504/ijcat.2000.000224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

D'Isep, F., und L. Sertorio. „Irreversibility for active structures“. Il Nuovo Cimento B 94, Nr. 2 (August 1986): 168–74. http://dx.doi.org/10.1007/bf02759755.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Soong, T. T., und B. F. Spencer. „Active, semi-active and hybrid control of structures“. Bulletin of the New Zealand Society for Earthquake Engineering 33, Nr. 3 (30.09.2000): 387–402. http://dx.doi.org/10.5459/bnzsee.33.3.387-402.

Der volle Inhalt der Quelle
Annotation:
In recent years, considerable attention has been paid to research and development of passive and active structural control devices, with particular emphasis on alleviation of wind and seismic response of buildings and bridges. In both areas, serious efforts have been undertaken to develop the structural control concept into a workable technology, and today we have many such devices installed in a wide variety of structures. The focus of this state-of-the-art paper is on active, semi-active and hybrid structural control with seismic applications. These systems employ controllable force devices integrated with sensors, controllers and real-time information processing. This paper includes a brief historical outline of their development and an assessment of the state-of-the-art and state-of-the-practice of this exciting, and still evolving, technology. Also included in the discussion are their advantages and limitations in the context of seismic design and retrofit of civil engineering structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Qureshi, Sohail M., Hajime Tsutsumi, Kiyoshi Uno und Shoichi Kitagawa. „ACTIVE CONTROL OF SLIDING STRUCTURES“. PROCEEDINGS OF THE JSCE EARTHQUAKE ENGINEERING SYMPOSIUM 21 (1991): 493–96. http://dx.doi.org/10.2208/proee1957.21.493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chang, C. M., B. M. Al-Hashimi und J. N. Ross. „Unified active filter biquad structures“. IEE Proceedings - Circuits, Devices and Systems 151, Nr. 4 (2004): 273. http://dx.doi.org/10.1049/ip-cds:20040132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pearl, Laurence. „Similarity of active-site structures“. Nature 362, Nr. 6415 (März 1993): 24. http://dx.doi.org/10.1038/362024a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nathal, Michael V., und George L. Stefko. „Smart Materials and Active Structures“. Journal of Aerospace Engineering 26, Nr. 2 (April 2013): 491–99. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000319.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sirlin, S., C. Paliou, R. W. Longman, M. Shinozuka und E. Samaras. „Active Control of Floating Structures“. Journal of Engineering Mechanics 112, Nr. 9 (September 1986): 947–65. http://dx.doi.org/10.1061/(asce)0733-9399(1986)112:9(947).

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Reinhorn, A. M., G. D. Manolis und C. Y. Wen. „Active Control of Inelastic Structures“. Journal of Engineering Mechanics 113, Nr. 3 (März 1987): 315–33. http://dx.doi.org/10.1061/(asce)0733-9399(1987)113:3(315).

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Firczuk, Małgorzata, Artur Mucha und Matthias Bochtler. „Crystal Structures of Active LytM“. Journal of Molecular Biology 354, Nr. 3 (Dezember 2005): 578–90. http://dx.doi.org/10.1016/j.jmb.2005.09.082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Barsoum, Roshdy George S. „Active materials and adaptive structures“. Smart Materials and Structures 6, Nr. 1 (01.02.1997): 117–22. http://dx.doi.org/10.1088/0964-1726/6/1/014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Baz, A. „Active Control of Periodic Structures“. Journal of Vibration and Acoustics 123, Nr. 4 (01.06.2001): 472–79. http://dx.doi.org/10.1115/1.1399052.

Der volle Inhalt der Quelle
Annotation:
Conventional passive periodic structures exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic structures only within specific frequency bands called the “Pass Bands” and wave propagation is completely blocked within other frequency bands called the “Stop Bands.” In this paper, the emphasis is placed on providing the passive structures with active control capabilities in order to tune the spectral width and location of the pass and stop bands in response to the structural vibration. Apart from their unique filtering characteristics, the ability of periodic structures to transmit waves, from one location to another, within the pass bands can be greatly reduced when the ideal periodicity is disrupted resulting in the well-known phenomenon of “Localization.” In the case of passive structures, the aperiodicity (or the disorder) can result from unintentional material, geometric and manufacturing variability. However, in the case of active periodic structures the aperiodicity is intentionally introduced by proper tuning of the controllers of the individual substructure or cell. The theory governing the operation of this class of Active Periodic structures is introduced and numerical examples are presented to illustrate their tunable filtering and localization characteristics. The examples considered include periodic/aperiodic spring-mass systems controlled by piezoelectric actuators. The presented results emphasize the unique potential of the active periodic structures in controlling the wave propagation both in the spectral and spatial domains in an attempt to stop/confine the propagation of undesirable disturbances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Fisco, N. R., und H. Adeli. „Smart structures: Part I—Active and semi-active control“. Scientia Iranica 18, Nr. 3 (Juni 2011): 275–84. http://dx.doi.org/10.1016/j.scient.2011.05.034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Melville, Stephen, Cecilie Brandt-Olsen und John Harding. „Calibrated modelling of form-active structures“. IABSE Symposium Report 108, Nr. 1 (19.04.2017): 155–56. http://dx.doi.org/10.2749/222137817821232432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Trudeau, Charles, Martin Bolduc, Patrick Beaupré, Patrice Topart, Christine Alain und Sylvain Cloutier. „Inkjet-Printed Flexible Active Multilayered Structures“. MRS Advances 2, Nr. 18 (2017): 1015–20. http://dx.doi.org/10.1557/adv.2017.237.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTActive inkjet materials are invoked in the fabrication of optoelectronic devices. These types of multilayer assemblies contain a variety of commercially available ink formulations. It is envisioned that a dielectric SU-8 material can be used in a FET-like structure to form an interlayer between conductive silver and semi-conductive MWCNT-doped PEDOT:PSS ink layers. These printed structures may be fabricated onto a polyimide based flexible substrate, for instance. These structures are a starting point for offering valuable information on layer-on-layer printing interactions and interface problematics within a complete inkjet device fabrication.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Al Sabouni-Zawadzka, A. „Active Control Of Smart Tensegrity Structures“. Archives of Civil Engineering 60, Nr. 4 (01.12.2014): 517–34. http://dx.doi.org/10.2478/ace-2014-0034.

Der volle Inhalt der Quelle
Annotation:
AbstractThe topic of smart structures, their active control and implementation, is relatively new. Therefore, different approaches to the problem can be met. The present paper discusses variable aspects of the active control of structures. It explains the idea of smart systems, introduces different terms used in smart technique and defines the structural smartness. The author indicates differences between actively controlled structures and structural health monitoring systems and shows an example of an actively controlled smart footbridge.The analyses presented in the study concern tensegrity structures, which are prone to the structural control through self-stress state adjustment. The paper introduces examples of structural control performed on tensegrity modules and plates. An influence of several self-stress states on displacements is analyzed and a study concerning damage due to member loss is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Dudovich, N., G. Levy-Yurista, A. Sharon, A. A. Friesem und H. G. Weber. „Active semiconductor-based grating waveguide structures“. IEEE Journal of Quantum Electronics 37, Nr. 8 (2001): 1030–39. http://dx.doi.org/10.1109/3.937392.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Cha, J. Z., J. M. Pitarresi und T. T. Soong. „Optimal Design Procedures for Active Structures“. Journal of Structural Engineering 114, Nr. 12 (Dezember 1988): 2710–23. http://dx.doi.org/10.1061/(asce)0733-9445(1988)114:12(2710).

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

HAN, SANG-JUN, PANOS TSOPELAS und A. BAZ. „ACTIVE/PASSIVE SEISMIC CONTROL OF STRUCTURES“. Journal of Earthquake Engineering 10, Nr. 4 (Juli 2006): 509–26. http://dx.doi.org/10.1080/13632460609350607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Follador, M., A. T. Conn, B. Mazzolai und J. Rossiter. „Active-elastic bistable minimum energy structures“. Applied Physics Letters 105, Nr. 14 (06.10.2014): 141903. http://dx.doi.org/10.1063/1.4898142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jiang, Nina, Xiaolu Zhuo und Jianfang Wang. „Active Plasmonics: Principles, Structures, and Applications“. Chemical Reviews 118, Nr. 6 (29.09.2017): 3054–99. http://dx.doi.org/10.1021/acs.chemrev.7b00252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Stemberk, J., B. Kostak und V. Vilimek. „3D monitoring of active tectonic structures“. Journal of Geodynamics 36, Nr. 1-2 (August 2003): 103–12. http://dx.doi.org/10.1016/s0264-3707(03)00042-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Pantelides, Chris P. „Active control of wind-excited structures“. Journal of Wind Engineering and Industrial Aerodynamics 36 (Januar 1990): 189–202. http://dx.doi.org/10.1016/0167-6105(90)90304-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Porta, Josep M., und Sergi Hernández-Juan. „Path planning for active tensegrity structures“. International Journal of Solids and Structures 78-79 (Januar 2016): 47–56. http://dx.doi.org/10.1016/j.ijsolstr.2015.09.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Keller, Christoph U. „Small-Scale Structures in Active Regions“. International Astronomical Union Colloquium 141 (1993): 3–10. http://dx.doi.org/10.1017/s0252921100028670.

Der volle Inhalt der Quelle
Annotation:
AbstractWithin the last few years significant progress has been made in our understanding of the small-scale structures in active regions. Here I present some of the newest findings obtained by using speckle interferometric techniques. There exist continuum bright points with a contrast of about 30% that are cospatial with strong magnetic fields. The observations are consistent with the assumption that some facular and network bright points are the white-light signature of magnetic fluxtubes with a diameter of about 200 km. Magnetic elements larger than about 300 km are mainly darker than the average quiet sun. Their properties are similar to what has been called magnetic knots or invisible sunspots. In highly magnetic areas there is no clear relationship between continuum intensity and magnetogram signal at the smallest spatial scales. The magnetic field of pores extends beyond the dark umbra. There radially elongated structures may appear that are similar to penumbral filaments in sunspots.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Asano, Koichiro, und Hajime Nakagawa. „Active Saturation Control of Hysteretic Structures“. Computer-Aided Civil and Infrastructure Engineering 13, Nr. 6 (November 1998): 425–32. http://dx.doi.org/10.1111/0885-9507.00120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Inman, Danieal J. „Active modal control for smart structures“. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, Nr. 1778 (15.01.2001): 205–19. http://dx.doi.org/10.1098/rsta.2000.0721.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Araújo, A. L., H. M. R. Lopes, M. A. P. Vaz, C. M. Mota Soares, J. Herskovits und P. Pedersen. „Parameter estimation in active plate structures“. Computers & Structures 84, Nr. 22-23 (September 2006): 1471–79. http://dx.doi.org/10.1016/j.compstruc.2006.01.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gluck, J., Y. Ribakov und A. N. Dancygier. „Predictive active control of MDOF structures“. Earthquake Engineering & Structural Dynamics 29, Nr. 1 (Januar 2000): 109–25. http://dx.doi.org/10.1002/(sici)1096-9845(200001)29:1<109::aid-eqe898>3.0.co;2-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

WATANABE, Shuya, und Jun SHINTAKE. „Active tensegrity structures using electrostatic actuators“. Proceedings of the Dynamics & Design Conference 2022 (2022): 501. http://dx.doi.org/10.1299/jsmedmc.2022.501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

SINGH, M. P., E. E. MATHEU und L. E. SUAREZ. „ACTIVE AND SEMI-ACTIVE CONTROL OF STRUCTURES UNDER SEISMIC EXCITATION“. Earthquake Engineering & Structural Dynamics 26, Nr. 2 (Februar 1997): 193–213. http://dx.doi.org/10.1002/(sici)1096-9845(199702)26:2<193::aid-eqe634>3.0.co;2-#.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Takezawa, Akihiro, Kanjuro Makihara, Nozomu Kogiso und Mitsuru Kitamura. „CO-JP-1 Ground structure approach for PZT layout optimization in semi-active vibration control systems of space structures“. Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _CO—JP—1–1—_CO—JP—1–1. http://dx.doi.org/10.1299/jsmemecj.2012._co-jp-1-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Itoh, T., T. Shimomura und H. Okubo. „2B15 Semi-active Vibration Control of Smart Structures with Sliding Mode Control“. Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _2B15–1_—_2B15–11_. http://dx.doi.org/10.1299/jsmemovic.2010._2b15-1_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mohan, P. V. A. „Generation of OTA-C filter structures from active RC filter structures“. IEEE Transactions on Circuits and Systems 37, Nr. 5 (Mai 1990): 656–60. http://dx.doi.org/10.1109/31.55014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Kwak, Moon K., Dong-Ho Yang und Ji-Hwan Shin. „Active vibration control of structures using a semi-active dynamic absorber“. Noise Control Engineering Journal 63, Nr. 3 (01.05.2015): 287–99. http://dx.doi.org/10.3397/1/376326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wang, Yafeng, Xian Xu und Yaozhi Luo. „Minimal mass design of active tensegrity structures“. Engineering Structures 234 (Mai 2021): 111965. http://dx.doi.org/10.1016/j.engstruct.2021.111965.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lee, Hamilton, und Jacqueline Williams. „In Defense of All-Active Manager Structures“. Journal of Investing 25, Nr. 4 (30.11.2016): 7–19. http://dx.doi.org/10.3905/joi.2016.25.4.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

BABA, Shunsuke, Kohki NINOMIYA und Tateo KAJITA. „Digital active optimal control of steel structures.“ Doboku Gakkai Ronbunshu, Nr. 380 (1987): 375–81. http://dx.doi.org/10.2208/jscej.1987.380_375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Rai, Gopal L. „Advanced Active Prestressed CFRP in RCC Structures“. Advanced Materials Research 1129 (November 2015): 290–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1129.290.

Der volle Inhalt der Quelle
Annotation:
. The need for rehabilitation of reinforced concrete structures is rapidly increasing. Fibre reinforced polymer (FRP) composite materials for concrete structures have high strength-to-weight ratios that can provide high prestressing forces while adding minimal additional weight to a structure. They also have good fatigue properties and exhibit low relaxation losses, both of which can increase the service lives and the load carrying capacities of reinforced concrete structures. Carbon fiber reinforced polymer (CFRP) composite system is integrated system based on carbon fibres and epoxy resins. By prestressing the CFRP laminates, the material is used more efficiently as a part of its tensile capacity is utilised and it contributes to the load bearing capacity under both service and ultimate load condition. This is an ideal technique as it combines the advantage of using noncorrosive and lightweight advanced composite material in the form of FRP laminates with high efficiency offered by external prestressing. An innovative mechanical anchorage system was developed to prestress the FRP laminates directly by jacking and reacting against the RCC structure.This paper describes the use of Prestressed CFRP laminates for strengthening of RCC structures including practical applications on slabs and bridges. Also it elucidates the post strengthening testing carried out for the validation of this technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Barnes, S., L. Kirssin, E. Needham, E. Baharlou, D. E. Carr und J. Ma. „3D printing of ecologically active soil structures“. Additive Manufacturing 52 (April 2022): 102670. http://dx.doi.org/10.1016/j.addma.2022.102670.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Sakamotu, Mitsuo. „Applications to Building Structures on Active Control“. IEEJ Transactions on Industry Applications 119, Nr. 7 (1999): 926–31. http://dx.doi.org/10.1541/ieejias.119.926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Suzuki, Tetsuo, Mitsuru Kageyama und Arihide Nobata. „Active Vibration Control System for Tall Structures“. Journal of Robotics and Mechatronics 6, Nr. 4 (20.08.1994): 327–31. http://dx.doi.org/10.20965/jrm.1994.p0327.

Der volle Inhalt der Quelle
Annotation:
The authors, concerned with the enhancement of living comfort in tall structures during strong winds or medium to small-scale earthquakes, have developed an active vibration control system which is capable of controlling a multiple number of vibration modes at the same time, and have already demonstrated the usefulness of this system by conducting verification experiments using a small device1) and an actual-size device2). And this time, an active vibration control system based on the research results obtained up to now has been applied to an actual structure for the first time in the world. This report describes an outline of this system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Preumont, A., und Y. Achkire. „Active Damping of Structures with Guy Cables“. Journal of Guidance, Control, and Dynamics 20, Nr. 2 (März 1997): 320–26. http://dx.doi.org/10.2514/2.4040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Malhis, M., L. Gaudiller und J. Der Hagopian. „Fuzzy Modal Active Control of Flexible Structures“. Journal of Vibration and Control 11, Nr. 1 (Januar 2005): 67–88. http://dx.doi.org/10.1177/10775463045046028.

Der volle Inhalt der Quelle
Annotation:
In this paper we propose a new active control strategy to control the dynamic behavior of flexible structures: fuzzy modal control (FMC). This strategy, based on the modal state feedback of the structure, uses independent fuzzy controllers for each mode to be controlled. This method is applied to a flexible beam controlled by a transverse plane of action using piezoelectric actuators. First of all, a model of a piezoelectric actuator is proposed, followed by the formulation of a finite-element model of the mechanical structure/actuator. The model is then fitted using an identification of the characteristics. After modal reduction, the FMC is carried out in two steps: the control of the beam in only one transverse direction by a piezoelectric pusher, then in two transverse directions by two orthogonal piezoelectric pushers located on the same plane. A digital controller was built in the Matlab®-Simulink® environment, and implemented on specialized cards in order to perform the corresponding experiment. The method is validated by comparing the results between the simulation and the experiment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Zhu, Yiwen, Audrey Sulkanen, Gang-Yu Liu und Gang Sun. „Daylight-Active Cellulose Nanocrystals Containing Anthraquinone Structures“. Materials 13, Nr. 16 (11.08.2020): 3547. http://dx.doi.org/10.3390/ma13163547.

Der volle Inhalt der Quelle
Annotation:
Antimicrobial and antiviral materials have attracted significant interest in recent years due to increasing occurrences of nosocomial infections and pathogenic microbial contamination. One method to address this is the combination of photoactive compounds that can produce reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals to disinfect microbes, with carrier materials that meet the application requirements. Using anthraquinone (AQ) and cellulose nanocrystals (CNCs) as the photoactive and carrier components, respectively, this work demonstrated the first covalent incorporation of AQ onto CNCs. The morphology and the photoactive properties were investigated, revealing the structural integrity of the CNCs and the high degree of photoactivity of the AQ-CNC materials upon UVA exposure. The AQ-CNCs also exhibited an unexpected persistent generation of ROS under darkness, which adds advantages for antimicrobial applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Sommerfeldt, Scott D. „Active control of radiation from vibrating structures.“ Journal of the Acoustical Society of America 91, Nr. 4 (April 1992): 2348. http://dx.doi.org/10.1121/1.403444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Alexandropoulos, Dimitris, Hercules Simos, Michael J. Adams und Dimitris Syvridis. „Optical Bistability in Active Semiconductor Microring Structures“. IEEE Journal of Selected Topics in Quantum Electronics 14, Nr. 3 (2008): 918–26. http://dx.doi.org/10.1109/jstqe.2008.921424.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Hladky‐Hennion, A. ‐C, J. ‐N Decarpigny und B. Hamonic. „Finite element modeling of active periodic structures.“ Journal of the Acoustical Society of America 90, Nr. 4 (Oktober 1991): 2316. http://dx.doi.org/10.1121/1.401034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Gaunaurd, G. C., H. C. Strifors, P. W. B. Moore und H. Huang. „Techniques for active classification of underwater structures“. Journal of the Acoustical Society of America 101, Nr. 5 (Mai 1997): 3151–52. http://dx.doi.org/10.1121/1.419073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie