Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Active sonar systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Active sonar systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Active sonar systems"
Zurk, Lisa, Jorge Quijano, Manish Velankar und Dan Rouseff. „Bistatic invariance for active sonar systems“. Journal of the Acoustical Society of America 120, Nr. 5 (November 2006): 3221. http://dx.doi.org/10.1121/1.4788183.
Der volle Inhalt der QuelleSoules, Mary E., und Joshua B. Broadwater. „Featureless classification for active sonar systems.“ Journal of the Acoustical Society of America 127, Nr. 3 (März 2010): 2042. http://dx.doi.org/10.1121/1.3385378.
Der volle Inhalt der QuelleLa Cour, Brian R., Kevin Johnson und Son Quach. „Multisensor registration for distributed active sonar systems“. Journal of the Acoustical Society of America 116, Nr. 4 (Oktober 2004): 2647. http://dx.doi.org/10.1121/1.4785564.
Der volle Inhalt der QuelleJiang, Jiajia, Xianquan Wang, Fajie Duan, Chunyue Li, Xiao Fu, Tingting Huang, Lingran Bu, Ling Ma und Zhongbo Sun. „Bio-Inspired Covert Active Sonar Strategy“. Sensors 18, Nr. 8 (26.07.2018): 2436. http://dx.doi.org/10.3390/s18082436.
Der volle Inhalt der QuelleKim, Suhwan, Bonhwa Ku, Wooyoung Hong und Hanseok Ko. „Performance comparison of target localization for active sonar systems“. IEEE Transactions on Aerospace and Electronic Systems 44, Nr. 4 (Oktober 2008): 1371–80. http://dx.doi.org/10.1109/taes.2008.4667715.
Der volle Inhalt der QuelleHjelmervik, Karl Thomas, und Geir Helge Sandsmark. „In ocean evaluation of low frequency active sonar systems“. Journal of the Acoustical Society of America 123, Nr. 5 (Mai 2008): 3434. http://dx.doi.org/10.1121/1.2934216.
Der volle Inhalt der QuelleXu, Luzhou, Jian Li und Akshay Jain. „Impact of strong direct blast on active sonar systems“. IEEE Transactions on Aerospace and Electronic Systems 51, Nr. 2 (April 2015): 894–909. http://dx.doi.org/10.1109/taes.2014.140442.
Der volle Inhalt der QuelleLepper, Paul A., und Denise Risch. „Sonar signal analysis: Biological consequences of out-of-band acoustic signals from active sonar systems“. Journal of the Acoustical Society of America 144, Nr. 3 (September 2018): 1920. http://dx.doi.org/10.1121/1.5068410.
Der volle Inhalt der QuelleStergiopoulos, Stergios. „Implementation of adaptive processing schemes in active and passive sonar systems“. Journal of the Acoustical Society of America 100, Nr. 4 (Oktober 1996): 2853. http://dx.doi.org/10.1121/1.416780.
Der volle Inhalt der QuelleKwak, ChulHyun, Myoung Jun Cheong und Jae-Kyun Ahn. „A clutter reduction algorithm based on clustering for active sonar systems“. Journal of the Acoustical Society of Korea 35, Nr. 2 (31.03.2016): 149–57. http://dx.doi.org/10.7776/ask.2016.35.2.149.
Der volle Inhalt der QuelleDissertationen zum Thema "Active sonar systems"
Ljung, Johnny. „Track Before Detect in Active Sonar Systems“. Thesis, Uppsala universitet, Signaler och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447314.
Der volle Inhalt der QuelleWinter, Thomas A. „Examination of time-reversal acoustic application to shallow water active sonar systems“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA378874.
Der volle Inhalt der QuelleCarper, Scott Adams. „Low frequency active sonar performance in the Arctic Beaufort Lens“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113758.
Der volle Inhalt der QuelleThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 885-86).
A newly discovered double ducted acoustic environment present throughout much of the Beaufort Sea in the Arctic has a major effect on active acoustic transmissions. This work performs an in depth analysis of how the lower duct impacts the propagation of various active signals used commonly for acoustic communications or active sonar. First, this thesis performs a thorough modal analysis of the effect of the double ducted environment on long range propagation of a 300 Hz and 3500 Hz pulse. Signal excess is determined for the two different source pulses to quantify the effect of the lower duct on noise and SNR. Finally, channel capacity is calculated for the two frequency bands to evaluate operational impacts of the lower duct on acoustic communication systems in the Arctic.
by Scott Adams Carper
S.M. in Oceanographic Engineering
S.M.
Hassan, Marwa M. „Framework for active solar collection systems“. Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/28048.
Der volle Inhalt der QuellePh. D.
Westman, Peter, und Mikael Andersson. „Design of behavior classifying and tracking system with sonar“. Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11495.
Der volle Inhalt der QuelleThe domain below the surface in maritime security is hard to monitor with conventional methods, due to the often very noisy environment. In conventional methods the measurements are thresholded in order to distinguish potential targets. This is not always a feasible way of treating measurements. In this thesis a system based on raw measurements, that are not thresholded, is presented in order to track and classify divers with an active sonar. With this system it is possible to detect and track weak targets, even with a signal to noise ratio that often goes below 0 dB.
The system in this thesis can be divided into three parts: the processing of measurements, the association of measurements to targets and the classification of targets. The processing of measurements is based on a particle filter using Track Before Detect (TBD). Two algorithms for association of measurements, Joint Probabilistic Data Association (JPDA) and Highest Probability Data Association (HPDA), have been implemented. The classification of targets is done using an assumed novel approach. The system is evaluated by doing simulations with approximately 8 hours of recorded data, where divers are present at nine different times. The simulations are done a number of times to catch The classification rate is high and the false alarm rate is low.
Undervattensdomänen är svår att övervaka i marina säkerhetssystem med sedvanliga metoder, på grund av den brusiga miljön. I traditionella metoder trösklas mätningarna för att urskilja potentiella mål. Detta är inte alltid ett godtagbart sätt att behandla mätningar på. I den här rapporten presenteras ett system baserat på behandling av rå mätdata, som inte trösklas, för att spåra och klassificera dykare med en aktiv sonar. Med detta system är det möjligt att detektera och spåra svaga mål, trots att signal till brus förhållandet ofta går under 0 dB.
Systemet i den här rapporten kan delas upp i tre delar: behandling av mätningar, association av mätningar till mål samt klassificering av mål. Behandlingen av mätningarna görs med ett partikelfilter som använder Track Before Detect (TBD). Två algoritmer för associering av mätningar, Joint Probabilistic Data Association (JPDA) och Highest Probability Data Association (HPDA), har implementerats. Klassificeringen av mål görs med en egenutvecklad metod som inte har hittats i existerande dokumentation. Systemet utvärderas genom att simuleringar görs på ungefär 8 timmar inspelad data, där dykare är närvarande vid nio olika tillfällen. Simuleringarna görs ett antal gånger för att fånga upp stokastiska beteenden. Andelen lyckade klassificeringar är hög och andelen falsklarm är låg.
Flores, Garcia Erick. „Simulation of attitude and orbital disturbances acting on ASPECT satellite in the vicinity of the binary asteroid Didymos“. Thesis, Luleå tekniska universitet, Rymdteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-62007.
Der volle Inhalt der QuelleReynell, M. J. W. „An investigation into the sensitivity of the performance of an active solar heating system to the control strategy employed“. Thesis, University of Bath, 1985. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353765.
Der volle Inhalt der QuelleGhosh, Shibani. „A Real-time Management of Distribution Voltage Fluctuations due to High Solar Photovoltaic (PV) Penetrations“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/74424.
Der volle Inhalt der QuellePh. D.
Raffaelli, Tatiana Ferreira. „Previsão de atividade solar a partir da configuração dos campos magnéticos fotosféricos“. Universidade Presbiteriana Mackenzie, 2007. http://tede.mackenzie.br/jspui/handle/tede/1480.
Der volle Inhalt der QuelleThe existence of a highly reliable prediction system to detect the occurrence of large solar flares (class X) is still an unsolved problem. Despite many studies performed so far, no such a system has been found yet. In this work, we have developed a method using Bayesian Network - an Artificial Intelligence technique for the detection of giant solar flares. The Bayesian Networks software learned the relation among the variables that describe the sunspots within an active region and built a network with the relationships among them based on conditional probabilities. The studies were divided into two stages one to detect whether the sunspot would produce a big flare or not and another phase where some networks were built to discover the day the flare would occur. The first phase results were very satisfactory reaching a reliability of 77%. The second phase was more complex and the results were about 77% (with day constraints) and 54% (a wider range of days).
A existência de um sistema de previsão, de alta confiabilidade, para a detecção de ocorrência de grandes explosões solares (classe X) ainda é um problema sem solução. Existem diversos estudos nesta área, porém ainda não foi encontrado nenhum sistema eficiente. Para este trabalho foi desenvolvido um método utilizando-se redes Bayesianas, técnica de Inteligência Artificial, para a previsão das grandes flares (explosões) solares. O software de redes Bayesianas aprendeu a relação entre as variáveis que descrevem as regiões ativas e constroem uma rede com os relacionamentos entre elas baseados em probabilidades condicionais. Os estudos foram divididos em duas etapas, uma rede para detectar se a mancha solar irá produzir uma grande explosão ou não, e uma outra etapa em que foram construídas redes para prever o dia em que a explosão irá ocorrer. Os resultados obtidos na primeira etapa foram bem satisfatórios, atingindo 84% de confiabilidade. Já a segunda etapa do trabalho mostrou-se mais complexa e os resultados obtidos foram de 77% (com restrições de dias) e 54% (sem restrições de dia).
Coste, Marianne. „Les processus sédimentaires, depuis la pente continentale jusqu'au bassin, en contexte de tectonique active : analyse comparée entre la Marge Calabro-Ionienne et la Marge Ligure durant les derniers 5 Ma“. Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01062293.
Der volle Inhalt der QuelleBücher zum Thema "Active sonar systems"
Mansour, Monadl Abd Al-Abbas. Technique of plot-association for active sonar systems. Birmingham: Universityof Birmingham, 1994.
Den vollen Inhalt der Quelle findenWinter, Thomas A. Examination of time-reversal acoustic application to shallow water active sonar systems. Monterey, Calif: Naval Postgraduate School, 2000.
Den vollen Inhalt der Quelle findenSolar Cooling Workshop (1984 Indian Institute of Technology, Madras). Active solar cooling systems: Proceedings of Solar Cooling Workshop, 1984. Herausgegeben von Chinnappa, J. C. V. 1923-, Indian Institute of Technology (Madras, India). Dept. of Mechanical Engineering. und James Cook University of North Queensland. Dept. of Civil and Systems Engineering. [Townsville, Queensland, Australia: James Cook University of North Queensland, 1986.
Den vollen Inhalt der Quelle findenPassive and active solar heating technology. Englewood Cliffs, NJ: Prentice-Hall, 1985.
Den vollen Inhalt der Quelle findenThe design and sizing of active solar thermal systems. Oxford [Oxfordshire]: Clarendon Press, 1987.
Den vollen Inhalt der Quelle findenBourges, Bernard. European simplified methods for active solar system design. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991.
Den vollen Inhalt der Quelle findenMinkoff, John. Signals, noise, and active sensors: Radar, sonar, laser radar. New York: Wiley, 1992.
Den vollen Inhalt der Quelle findenGraham, Ronald E. Neural network for positioning space station solar arrays. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenTom, Badgett, Hrsg. Ultimate Unauthorized Nintendo Classic Game Strategies. 2. Aufl. New York: Bantam Books, 1992.
Den vollen Inhalt der Quelle findenTom, Badgett, Hrsg. Ultimate Unauthorized Nintendo Classic Game Strategies. New York, N.Y.: Bantam Books, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Active sonar systems"
Son, Woo-Sung, YoungKwang Seo, Wan-Jin Kim und Hyoung-Nam Kim. „Analysis on Signal Transmission Methods for Rapid Searching in Active SONAR Systems“. In Lecture Notes in Electrical Engineering, 237–42. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0311-1_40.
Der volle Inhalt der QuelleKöhler-Bußmeier, Michael, und Matthias Wester-Ebbinghaus. „SONAR*: A Multi-Agent Infrastructure for Active Application Architectures and Inter-organisational Information Systems“. In Multiagent System Technologies, 248–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04143-3_27.
Der volle Inhalt der QuelleWilhelm, Klaus. „4.1.2.1 Active regions“. In Solar System, 116–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88055-4_6.
Der volle Inhalt der QuelleWilhelm, Klaus. „4.1.2.6 Coronal active regions“. In Solar System, 175–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88055-4_11.
Der volle Inhalt der QuelleHowell, J. R. „Active Hybrid Solar Cooling Systems“. In Solar Energy Utilization, 388–408. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3631-7_18.
Der volle Inhalt der QuelleCatalano, S. „Flares on Active Binary Systems“. In Magnetodynamic Phenomena in the Solar Atmosphere, 227–34. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0315-9_42.
Der volle Inhalt der QuelleAu, Whitlow W. L. „Target Detection Capability of the Active Sonar System“. In The Sonar of Dolphins, 140–76. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4356-4_8.
Der volle Inhalt der QuelleGarg, H. P. „Solar Heating of Buildings: Active Systems“. In Advances in Solar Energy Technology, 1–102. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3795-6_1.
Der volle Inhalt der QuelleTiwari, G. N., und Lovedeep Sahota. „Thermal Modeling of Active Solar-Distillation Systems“. In Advanced Solar-Distillation Systems, 211–52. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4672-8_5.
Der volle Inhalt der QuelleSchmidt, R., H. Arends, K. Torkar und N. Valanvanoglou. „Novel Methods for Active Spacecraft Potential Control“. In Solar System Plasma Physics, 261–65. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm054p0261.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Active sonar systems"
Soul, M. E., und J. B. Broadwater. „Featureless classification for active sonar systems“. In OCEANS 2010 IEEE - Sydney. IEEE, 2010. http://dx.doi.org/10.1109/oceanssyd.2010.5603657.
Der volle Inhalt der QuelleHempel, Christian G. „Track Initialization for Multi-Static Active Sonar Systems“. In OCEANS 2007 - Europe. IEEE, 2007. http://dx.doi.org/10.1109/oceanse.2007.4302458.
Der volle Inhalt der QuelleHempel, Christian. „Adaptive Track Detection for Multi-Static Active Sonar Systems“. In OCEANS 2006. IEEE, 2006. http://dx.doi.org/10.1109/oceans.2006.307035.
Der volle Inhalt der QuelleSang, Enfang, Zhengyan Shen, Chang Fan und Yuanshou Li. „Sonar image segmentation based on implicit active contours“. In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icicisys.2009.5357710.
Der volle Inhalt der QuelleHague, David A., und John R. Buck. „A generalized Sinusoidal Frequency Modulated waveform for active sonar“. In 2012 46th Asilomar Conference on Signals, Systems and Computers. IEEE, 2012. http://dx.doi.org/10.1109/acssc.2012.6489140.
Der volle Inhalt der QuelleScharf, Louis L., und Ali Pezeshki. „Virtual Array Processing for Active Radar and Sonar Sensing“. In 2006 Fortieth Asilomar Conference on Signals, Systems and Computers. IEEE, 2006. http://dx.doi.org/10.1109/acssc.2006.354847.
Der volle Inhalt der QuelleGianelli, Christopher, Luzhou Xu und Jian Li. „Active sonar systems in the presence of strong direct blast“. In OCEANS 2015 - Genova. IEEE, 2015. http://dx.doi.org/10.1109/oceans-genova.2015.7271386.
Der volle Inhalt der QuelleAbraham, D. A. „Probability of false alarm estimation in oversampled active sonar systems“. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258). IEEE, 1999. http://dx.doi.org/10.1109/icassp.1999.761315.
Der volle Inhalt der QuelleWang, I.-Jeng, Jong Hyun Lim und Andreas Terzis. „Energy-efficient sensor management in multi-static active sonar networks“. In 2008 42nd Asilomar Conference on Signals, Systems and Computers. IEEE, 2008. http://dx.doi.org/10.1109/acssc.2008.5074695.
Der volle Inhalt der QuelleSong, Seung-Min, In-Dong Kim, Byung-Hwa Lee und Jeong-Min Lee. „Design of High-Efficiency High-Power Transmitter for Active Sonar“. In 2018 21st International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2018. http://dx.doi.org/10.23919/icems.2018.8548993.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Active sonar systems"
Wallace, Sean, Scott Lux, Constandinos Mitsingas, Irene Andsager und Tapan Patel. Performance testing and modeling of a transpired ventilation preheat solar wall : performance evaluation of facilities at Fort Drum, NY, and Kansas Air National Guard, Topeka, KS. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42000.
Der volle Inhalt der QuelleShort, W. D. Method for including operation and maintenance costs in the economic analysis of active solar energy systems. Office of Scientific and Technical Information (OSTI), August 1986. http://dx.doi.org/10.2172/5366867.
Der volle Inhalt der QuelleHerczfeld, P., R. Fischl und J. Helferty. Research on the control of active solar space conditioning systems, Phase 2: Volume 1, Summary of objectives and accomplishments: Final report. Office of Scientific and Technical Information (OSTI), Juli 1986. http://dx.doi.org/10.2172/5913592.
Der volle Inhalt der QuelleAtkinson, Dan, und Alex Hale, Hrsg. From Source to Sea: ScARF Marine and Maritime Panel Report. Society of Antiquaries of Scotland, September 2012. http://dx.doi.org/10.9750/scarf.09.2012.126.
Der volle Inhalt der Quelle