Zeitschriftenartikel zum Thema „Active learning in handwritten text recognition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Active learning in handwritten text recognition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Maddineni, Bhavyasri. „Various Models for the Conversion of Handwritten Text to Digital Text“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VI (30.06.2021): 2894–99. http://dx.doi.org/10.22214/ijraset.2021.35616.
Der volle Inhalt der QuelleWang, Da-Han, und Cheng-Lin Liu. „Learning confidence transformation for handwritten Chinese text recognition“. International Journal on Document Analysis and Recognition (IJDAR) 17, Nr. 3 (05.11.2013): 205–19. http://dx.doi.org/10.1007/s10032-013-0214-3.
Der volle Inhalt der QuelleWang, Yintong, Wenjie Xiao und Shuo Li. „Offline Handwritten Text Recognition Using Deep Learning: A Review“. Journal of Physics: Conference Series 1848, Nr. 1 (01.04.2021): 012015. http://dx.doi.org/10.1088/1742-6596/1848/1/012015.
Der volle Inhalt der QuelleKhalkar, Rohini G., Adarsh Singh Dikhit und Anirudh Goel. „Handwritten Text Recognition using Deep Learning (CNN & RNN)“. IARJSET 8, Nr. 6 (30.06.2021): 870–81. http://dx.doi.org/10.17148/iarjset.2021.86148.
Der volle Inhalt der QuellePrabhanjan, S., und R. Dinesh. „Deep Learning Approach for Devanagari Script Recognition“. International Journal of Image and Graphics 17, Nr. 03 (Juli 2017): 1750016. http://dx.doi.org/10.1142/s0219467817500164.
Der volle Inhalt der QuelleEt. al., Kavitha Ananth,. „Handwritten Text Recognition using Deep Learning and Word Beam Search“. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, Nr. 2 (11.04.2021): 2905–11. http://dx.doi.org/10.17762/turcomat.v12i2.2326.
Der volle Inhalt der QuelleAnnanurov, Bayram, und Norliza Noor. „A compact deep learning model for Khmer handwritten text recognition“. IAES International Journal of Artificial Intelligence (IJ-AI) 10, Nr. 3 (01.09.2021): 584. http://dx.doi.org/10.11591/ijai.v10.i3.pp584-591.
Der volle Inhalt der QuelleAhmad, Riaz, Saeeda Naz, Muhammad Afzal, Sheikh Rashid, Marcus Liwicki und Andreas Dengel. „A Deep Learning based Arabic Script Recognition System: Benchmark on KHAT“. International Arab Journal of Information Technology 17, Nr. 3 (01.05.2020): 299–305. http://dx.doi.org/10.34028/iajit/17/3/3.
Der volle Inhalt der QuelleNurseitov, Daniyar, Kairat Bostanbekov, Anel Alimova, Abdelrahman Abdallah und Galymzhan Abdimanap. „Classification of Handwritten Names of Cities and Handwritten Text Recognition using Various Deep Learning Models“. Advances in Science, Technology and Engineering Systems Journal 5, Nr. 5 (2020): 934–43. http://dx.doi.org/10.25046/aj0505114.
Der volle Inhalt der QuelleDinges, Laslo, Ayoub Al-Hamadi, Moftah Elzobi, Sherif El-etriby und Ahmed Ghoneim. „ASM Based Synthesis of Handwritten Arabic Text Pages“. Scientific World Journal 2015 (2015): 1–18. http://dx.doi.org/10.1155/2015/323575.
Der volle Inhalt der QuelleAmin, Muhammad Sadiq, Siddiqui Muhammad Yasir und Hyunsik Ahn. „Recognition of Pashto Handwritten Characters Based on Deep Learning“. Sensors 20, Nr. 20 (17.10.2020): 5884. http://dx.doi.org/10.3390/s20205884.
Der volle Inhalt der QuelleGÜNTER, SIMON, und HORST BUNKE. „MULTIPLE CLASSIFIER SYSTEMS IN OFFLINE HANDWRITTEN WORD RECOGNITION — ON THE INFLUENCE OF TRAINING SET AND VOCABULARY SIZE“. International Journal of Pattern Recognition and Artificial Intelligence 18, Nr. 07 (November 2004): 1303–20. http://dx.doi.org/10.1142/s0218001404003678.
Der volle Inhalt der QuelleEt al., Dr S. K. Nivetha. „Recognition and Digitization of Handwritten Text using Histogram of Gradients and Artificial Neural Network“. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, Nr. 6 (05.04.2021): 2555–64. http://dx.doi.org/10.17762/turcomat.v12i6.5702.
Der volle Inhalt der QuelleRizvi, S. S. R., A. Sagheer, K. Adnan und A. Muhammad. „Optical Character Recognition System for Nastalique Urdu-Like Script Languages Using Supervised Learning“. International Journal of Pattern Recognition and Artificial Intelligence 33, Nr. 10 (September 2019): 1953004. http://dx.doi.org/10.1142/s0218001419530045.
Der volle Inhalt der QuelleAL-Saffar, Ahmed, Suryanti Awang, Wafaa AL-Saiagh, Sabrina Tiun und A. S. Al-khaleefa. „Deep Learning Algorithms for Arabic Handwriting Recognition: A Review“. International Journal of Engineering & Technology 7, Nr. 3.20 (01.09.2018): 344. http://dx.doi.org/10.14419/ijet.v7i3.20.19271.
Der volle Inhalt der QuelleAttigeri, Savitha. „Neural Network based Handwritten Character Recognition system“. International Journal Of Engineering And Computer Science 7, Nr. 03 (22.03.2018): 23761–68. http://dx.doi.org/10.18535/ijecs/v7i3.18.
Der volle Inhalt der QuelleModi, Rohan. „Transcript Anatomization with Multi-Linguistic and Speech Synthesis Features“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VI (20.06.2021): 1755–58. http://dx.doi.org/10.22214/ijraset.2021.35371.
Der volle Inhalt der QuelleElleuch, Mohamed, und Monji Kherallah. „Boosting of Deep Convolutional Architectures for Arabic Handwriting Recognition“. International Journal of Multimedia Data Engineering and Management 10, Nr. 4 (Oktober 2019): 26–45. http://dx.doi.org/10.4018/ijmdem.2019100102.
Der volle Inhalt der QuelleNaidu, D. J. Samatha, und T. Mahammad Rafi. „HANDWRITTEN CHARACTER RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS“. International Journal of Computer Science and Mobile Computing 10, Nr. 8 (30.08.2021): 41–45. http://dx.doi.org/10.47760/ijcsmc.2021.v10i08.007.
Der volle Inhalt der QuelleMiłosz, Marek, und Janusz Gazda. „Effectiveness of artificial neural networks in recognising handwriting characters“. Journal of Computer Sciences Institute 7 (30.09.2018): 210–14. http://dx.doi.org/10.35784/jcsi.680.
Der volle Inhalt der QuelleAjmire, P. E. „Offline Handwritten Devanagari Numeral Recognition Using Artificial Neural Network“. International Journal of Advanced Research in Computer Science and Software Engineering 7, Nr. 8 (30.08.2016): 79. http://dx.doi.org/10.23956/ijarcsse.v7i8.27.
Der volle Inhalt der QuelleSharma, Shubhankar, und Vatsala Arora. „Script Identification for Devanagari and Gurumukhi using OCR“. International Journal of Computer Science and Mobile Computing 10, Nr. 9 (30.09.2021): 12–22. http://dx.doi.org/10.47760/ijcsmc.2021.v10i09.002.
Der volle Inhalt der QuelleS J, Vivekanandan, und Dr Sivasubramanian S. „Handwritten Digit and Text Recognition Based On Convolutional Neural Network Approach“. Journal of University of Shanghai for Science and Technology 23, Nr. 07 (01.07.2021): 1518–25. http://dx.doi.org/10.51201/jusst/21/07330.
Der volle Inhalt der QuelleGuo, Hang, Ji Wan, Haobin Wang, Hanxiang Wu, Chen Xu, Liming Miao, Mengdi Han und Haixia Zhang. „Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition“. Research 2021 (01.04.2021): 1–9. http://dx.doi.org/10.34133/2021/4689869.
Der volle Inhalt der QuelleE.Kamalanaban, Dr, M. Gopinath und S. Premkumar. „Medicine Box: Doctor’s Prescription Recognition Using Deep Machine Learning“. International Journal of Engineering & Technology 7, Nr. 3.34 (01.09.2018): 114. http://dx.doi.org/10.14419/ijet.v7i3.34.18785.
Der volle Inhalt der QuelleMohammed, Mamoun Jassim, Suphian Mohammed Tariq und Hayder Ayad. „Isolated Arabic handwritten words recognition using EHD and HOG methods“. Indonesian Journal of Electrical Engineering and Computer Science 22, Nr. 2 (01.05.2021): 801. http://dx.doi.org/10.11591/ijeecs.v22.i2.pp801-808.
Der volle Inhalt der QuelleGupta, Akanksha, Ravindra Pratap Narwaria und Madhav Singh. „Review on Deep Learning Handwritten Digit Recognition using Convolutional Neural Network“. International Journal of Recent Technology and Engineering 9, Nr. 5 (30.01.2021): 245–47. http://dx.doi.org/10.35940/ijrte.e5287.019521.
Der volle Inhalt der QuelleKhan, Sulaiman, Habib Ullah Khan und Shah Nazir. „Offline Pashto Characters Dataset for OCR Systems“. Security and Communication Networks 2021 (27.07.2021): 1–7. http://dx.doi.org/10.1155/2021/3543816.
Der volle Inhalt der QuelleMukti, Mousumi Hasan, Quazi Saad-Ul-Mosaher und Khalil Ahammad. „Bengali Longhand Character Recognition using Fourier Transform and Euclidean Distance Metric“. European Journal of Engineering Research and Science 3, Nr. 7 (31.07.2018): 67. http://dx.doi.org/10.24018/ejers.2018.3.7.831.
Der volle Inhalt der QuelleKim, Chang-Min, Ellen J. Hong, Kyungyong Chung und Roy C. Park. „Line-segment Feature Analysis Algorithm Using Input Dimensionality Reduction for Handwritten Text Recognition“. Applied Sciences 10, Nr. 19 (01.10.2020): 6904. http://dx.doi.org/10.3390/app10196904.
Der volle Inhalt der QuelleRaja, Hiral, Aarti Gupta und Rohit Miri. „Recognition of Automated Hand-written Digits on Document Images Making Use of Machine Learning Techniques“. European Journal of Engineering and Technology Research 6, Nr. 4 (29.05.2021): 37–44. http://dx.doi.org/10.24018/ejers.2021.6.4.2460.
Der volle Inhalt der QuelleDevi, N. „Offline Handwritten Character Recognition using Convolutional Neural Network“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 8 (31.08.2021): 1483–89. http://dx.doi.org/10.22214/ijraset.2021.37610.
Der volle Inhalt der QuelleAlan Jiju, Shaun Tuscano und Chetana Badgujar. „OCR Text Extraction“. International Journal of Engineering and Management Research 11, Nr. 2 (18.04.2021): 83–86. http://dx.doi.org/10.31033/ijemr.11.2.11.
Der volle Inhalt der QuelleCecotti, Hubert. „Active graph based semi-supervised learning using image matching: Application to handwritten digit recognition“. Pattern Recognition Letters 73 (April 2016): 76–82. http://dx.doi.org/10.1016/j.patrec.2016.01.016.
Der volle Inhalt der QuelleXie, Zecheng, Zenghui Sun, Lianwen Jin, Hao Ni und Terry Lyons. „Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition“. IEEE Transactions on Pattern Analysis and Machine Intelligence 40, Nr. 8 (01.08.2018): 1903–17. http://dx.doi.org/10.1109/tpami.2017.2732978.
Der volle Inhalt der QuelleShibly, Mir Moynuddin Ahmed, Tahmina Akter Tisha, Tanzina Akter Tani und Shamim Ripon. „Convolutional neural network-based ensemble methods to recognize Bangla handwritten character“. PeerJ Computer Science 7 (28.06.2021): e565. http://dx.doi.org/10.7717/peerj-cs.565.
Der volle Inhalt der QuelleGifford, Nadia, Rafiq Ahmad und Mario Soriano Morales. „Text Recognition and Machine Learning: For Impaired Robots and Humans“. Alberta Academic Review 2, Nr. 2 (10.09.2019): 31–32. http://dx.doi.org/10.29173/aar42.
Der volle Inhalt der QuelleShanmugavel, Subramanian, Jagadeesh Kannan, Arjun Vaithilingam Sudhakar und . „Handwritten Optical Character Extraction and Recognition from Catalogue Sheets“. International Journal of Engineering & Technology 7, Nr. 4.5 (22.09.2018): 36. http://dx.doi.org/10.14419/ijet.v7i4.5.20005.
Der volle Inhalt der QuelleMohd Kadir, Nasibah Husna, Sharifah Nur Syafiqah Mohd Nur Hidayah, Norasiah Mohammad und Zaidah Ibrahim. „Comparison of convolutional neural network and bag of features for multi-font digit recognition“. Indonesian Journal of Electrical Engineering and Computer Science 15, Nr. 3 (01.09.2019): 1322. http://dx.doi.org/10.11591/ijeecs.v15.i3.pp1322-1328.
Der volle Inhalt der QuelleWei, Qiang, Yukun Chen, Mandana Salimi, Joshua C. Denny, Qiaozhu Mei, Thomas A. Lasko, Qingxia Chen et al. „Cost-aware active learning for named entity recognition in clinical text“. Journal of the American Medical Informatics Association 26, Nr. 11 (11.07.2019): 1314–22. http://dx.doi.org/10.1093/jamia/ocz102.
Der volle Inhalt der QuelleCan, Yekta Said, und M. Erdem Kabadayı. „Automatic CNN-Based Arabic Numeral Spotting and Handwritten Digit Recognition by Using Deep Transfer Learning in Ottoman Population Registers“. Applied Sciences 10, Nr. 16 (06.08.2020): 5430. http://dx.doi.org/10.3390/app10165430.
Der volle Inhalt der QuelleAL-Shatnawi, Atallah, Faisal Al-Saqqar und Safa’a Alhusban. „A Holistic Model for Recognition of Handwritten Arabic Text Based on the Local Binary Pattern Technique“. International Journal of Interactive Mobile Technologies (iJIM) 14, Nr. 16 (22.09.2020): 20. http://dx.doi.org/10.3991/ijim.v14i16.16005.
Der volle Inhalt der QuelleCan, Yekta Said, und M. Erdem Kabadayı. „Automatic Estimation of Age Distributions from the First Ottoman Empire Population Register Series by Using Deep Learning“. Electronics 10, Nr. 18 (13.09.2021): 2253. http://dx.doi.org/10.3390/electronics10182253.
Der volle Inhalt der QuelleHishimura, Kazuo, und Naotake Natori. „A Pratical Model to Simulate Human Handwriting and Its Application to Active Learning for Handwritten Character Recognition“. IEEJ Transactions on Electronics, Information and Systems 116, Nr. 8 (1996): 936–42. http://dx.doi.org/10.1541/ieejeiss1987.116.8_936.
Der volle Inhalt der QuelleChen, Xiaoxue, Lianwen Jin, Yuanzhi Zhu, Canjie Luo und Tianwei Wang. „Text Recognition in the Wild“. ACM Computing Surveys 54, Nr. 2 (April 2021): 1–35. http://dx.doi.org/10.1145/3440756.
Der volle Inhalt der QuelleAhmed, Rami, Mandar Gogate, Ahsen Tahir, Kia Dashtipour, Bassam Al-tamimi, Ahmad Hawalah, Mohammed A. El-Affendi und Amir Hussain. „Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts“. Entropy 23, Nr. 3 (13.03.2021): 340. http://dx.doi.org/10.3390/e23030340.
Der volle Inhalt der QuelleAdeyanju, Ibrahim, Olusayo Fenwa und Elijah Omidiora. „EFFECT OF NON-IMAGE FEATURES ON RECOGNITION OF HANDWRITTEN ALPHA-NUMERIC CHARACTERS“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 13, Nr. 11 (30.11.2014): 5155–61. http://dx.doi.org/10.24297/ijct.v13i11.2785.
Der volle Inhalt der QuelleQiu, Ningjia, Lin Cong, Sicheng Zhou und Peng Wang. „Barrage Text Classification with Improved Active Learning and CNN“. Journal of Advanced Computational Intelligence and Intelligent Informatics 23, Nr. 6 (20.11.2019): 980–89. http://dx.doi.org/10.20965/jaciii.2019.p0980.
Der volle Inhalt der QuelleChen, Yukun, Thomas A. Lasko, Qiaozhu Mei, Joshua C. Denny und Hua Xu. „A study of active learning methods for named entity recognition in clinical text“. Journal of Biomedical Informatics 58 (Dezember 2015): 11–18. http://dx.doi.org/10.1016/j.jbi.2015.09.010.
Der volle Inhalt der QuelleRizvi, Murtaza Abbas, Madhup Shrivastava und Monika Sahu. „ARTIFICIAL NEURAL NETWORK BASED CHARACTER RECOGNITION USING BACKPROPAGAT“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 3, Nr. 1 (01.08.2012): 184–87. http://dx.doi.org/10.24297/ijct.v3i1c.2777.
Der volle Inhalt der Quelle