Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Active learning in handwritten text recognition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Active learning in handwritten text recognition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Active learning in handwritten text recognition"
Maddineni, Bhavyasri. „Various Models for the Conversion of Handwritten Text to Digital Text“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VI (30.06.2021): 2894–99. http://dx.doi.org/10.22214/ijraset.2021.35616.
Der volle Inhalt der QuelleWang, Da-Han, und Cheng-Lin Liu. „Learning confidence transformation for handwritten Chinese text recognition“. International Journal on Document Analysis and Recognition (IJDAR) 17, Nr. 3 (05.11.2013): 205–19. http://dx.doi.org/10.1007/s10032-013-0214-3.
Der volle Inhalt der QuelleWang, Yintong, Wenjie Xiao und Shuo Li. „Offline Handwritten Text Recognition Using Deep Learning: A Review“. Journal of Physics: Conference Series 1848, Nr. 1 (01.04.2021): 012015. http://dx.doi.org/10.1088/1742-6596/1848/1/012015.
Der volle Inhalt der QuelleKhalkar, Rohini G., Adarsh Singh Dikhit und Anirudh Goel. „Handwritten Text Recognition using Deep Learning (CNN & RNN)“. IARJSET 8, Nr. 6 (30.06.2021): 870–81. http://dx.doi.org/10.17148/iarjset.2021.86148.
Der volle Inhalt der QuellePrabhanjan, S., und R. Dinesh. „Deep Learning Approach for Devanagari Script Recognition“. International Journal of Image and Graphics 17, Nr. 03 (Juli 2017): 1750016. http://dx.doi.org/10.1142/s0219467817500164.
Der volle Inhalt der QuelleEt. al., Kavitha Ananth,. „Handwritten Text Recognition using Deep Learning and Word Beam Search“. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, Nr. 2 (11.04.2021): 2905–11. http://dx.doi.org/10.17762/turcomat.v12i2.2326.
Der volle Inhalt der QuelleAnnanurov, Bayram, und Norliza Noor. „A compact deep learning model for Khmer handwritten text recognition“. IAES International Journal of Artificial Intelligence (IJ-AI) 10, Nr. 3 (01.09.2021): 584. http://dx.doi.org/10.11591/ijai.v10.i3.pp584-591.
Der volle Inhalt der QuelleAhmad, Riaz, Saeeda Naz, Muhammad Afzal, Sheikh Rashid, Marcus Liwicki und Andreas Dengel. „A Deep Learning based Arabic Script Recognition System: Benchmark on KHAT“. International Arab Journal of Information Technology 17, Nr. 3 (01.05.2020): 299–305. http://dx.doi.org/10.34028/iajit/17/3/3.
Der volle Inhalt der QuelleNurseitov, Daniyar, Kairat Bostanbekov, Anel Alimova, Abdelrahman Abdallah und Galymzhan Abdimanap. „Classification of Handwritten Names of Cities and Handwritten Text Recognition using Various Deep Learning Models“. Advances in Science, Technology and Engineering Systems Journal 5, Nr. 5 (2020): 934–43. http://dx.doi.org/10.25046/aj0505114.
Der volle Inhalt der QuelleDinges, Laslo, Ayoub Al-Hamadi, Moftah Elzobi, Sherif El-etriby und Ahmed Ghoneim. „ASM Based Synthesis of Handwritten Arabic Text Pages“. Scientific World Journal 2015 (2015): 1–18. http://dx.doi.org/10.1155/2015/323575.
Der volle Inhalt der QuelleDissertationen zum Thema "Active learning in handwritten text recognition"
Hříbek, David. „Active Learning pro zpracování archivních pramenů“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445535.
Der volle Inhalt der QuelleAlKhateeb, Jawad H. Y. „Word based off-line handwritten Arabic classification and recognition. Design of automatic recognition system for large vocabulary offline handwritten Arabic words using machine learning approaches“. Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4440.
Der volle Inhalt der QuelleAlKhateeb, Jawad Hasan Yasin. „Word based off-line handwritten Arabic classification and recognition : design of automatic recognition system for large vocabulary offline handwritten Arabic words using machine learning approaches“. Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4440.
Der volle Inhalt der QuelleSerrano, Martínez-Santos Nicolás. „Interactive Transcription of Old Text Documents“. Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/37979.
Der volle Inhalt der QuelleSerrano Martínez-Santos, N. (2014). Interactive Transcription of Old Text Documents [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37979
TESIS
Packer, Thomas L. „Scalable Detection and Extraction of Data in Lists in OCRed Text for Ontology Population Using Semi-Supervised and Unsupervised Active Wrapper Induction“. BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4258.
Der volle Inhalt der QuelleAlabau, Gonzalvo Vicente. „Multimodal interactive structured prediction“. Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/35135.
Der volle Inhalt der QuelleAlabau Gonzalvo, V. (2014). Multimodal interactive structured prediction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35135
TESIS
Premiado
Kohút, Jan. „Aktivní učení pro rozpoznávání textu“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403210.
Der volle Inhalt der QuelleBuchteile zum Thema "Active learning in handwritten text recognition"
Toselli, Alejandro Héctor, Enrique Vidal und Francisco Casacuberta. „Active Interaction and Learning in Handwritten Text Transcription“. In Multimodal Interactive Pattern Recognition and Applications, 119–33. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-479-1_5.
Der volle Inhalt der QuelleMestha, Punit, Shoaib Asif, Mansi Mayekar, Piyush Singh und Sonal Hutke. „Handwritten Text Line Recognition Using Deep Learning“. In Lecture Notes in Networks and Systems, 567–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84760-9_48.
Der volle Inhalt der QuelleInkeaw, Papangkorn, Jakramate Bootkrajang, Teresa Gonçalves und Jeerayut Chaijaruwanich. „Handwritten Character Recognition Using Active Semi-supervised Learning“. In Intelligent Data Engineering and Automated Learning – IDEAL 2018, 69–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03493-1_8.
Der volle Inhalt der QuelleZhang, Xu-Yao, Yi-Chao Wu, Fei Yin und Cheng-Lin Liu. „Deep Learning Based Handwritten Chinese Character and Text Recognition“. In Cognitive Computation Trends, 57–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06073-2_3.
Der volle Inhalt der QuelleGuélorget, Paul, Bruno Grilheres und Titus Zaharia. „Deep Active Learning with Simulated Rationales for Text Classification“. In Pattern Recognition and Artificial Intelligence, 363–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59830-3_32.
Der volle Inhalt der QuelleVan Tran, Cuong, Tuong Tri Nguyen, Dinh Tuyen Hoang, Dosam Hwang und Ngoc Thanh Nguyen. „Active Learning-Based Approach for Named Entity Recognition on Short Text Streams“. In Advances in Intelligent Systems and Computing, 321–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43982-2_28.
Der volle Inhalt der QuelleAbdel Hady, Mohamed Farouk, und Friedhelm Schwenker. „Combining Committee-Based Semi-supervised and Active Learning and Its Application to Handwritten Digits Recognition“. In Multiple Classifier Systems, 225–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12127-2_23.
Der volle Inhalt der QuelleLee, Hong, Brijesh Verma, Michael Li und Ashfaqur Rahman. „Machine Learning Techniques in Handwriting Recognition“. In Machine Learning Algorithms for Problem Solving in Computational Applications, 12–29. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1833-6.ch002.
Der volle Inhalt der QuellePorwal, Utkarsh, Zhixin Shi und Srirangaraj Setlur. „Machine Learning in Handwritten Arabic Text Recognition“. In Handbook of Statistics - Machine Learning: Theory and Applications, 443–69. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-444-53859-8.00018-7.
Der volle Inhalt der QuelleJin, Lianwen, Weixin Yang, Ziyong Feng und Zecheng Xie. „Online Handwritten Chinese Character Recognition: From a Bayesian Approach to Deep Learning“. In Advances in Chinese Document and Text Processing, 79–126. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813143685_0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Active learning in handwritten text recognition"
Romero, Veronica, Joan Andreu Sanchez und Alejandre H. Toselli. „Active Learning in Handwritten Text Recognition using the Derivational Entropy“. In 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE, 2018. http://dx.doi.org/10.1109/icfhr-2018.2018.00058.
Der volle Inhalt der QuelleNikitha, A., J. Geetha und D. S. JayaLakshmi. „Handwritten Text Recognition using Deep Learning“. In 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT). IEEE, 2020. http://dx.doi.org/10.1109/rteict49044.2020.9315679.
Der volle Inhalt der QuelleSerrano, Nicolás, Adrià Giménez, Albert Sanchis und Alfons Juan. „Active learning strategies for handwritten text transcription“. In International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1891903.1891962.
Der volle Inhalt der QuelleLouradour, Jerome, und Christopher Kermorvant. „Curriculum Learning for Handwritten Text Line Recognition“. In 2014 11th IAPR International Workshop on Document Analysis Systems (DAS). IEEE, 2014. http://dx.doi.org/10.1109/das.2014.38.
Der volle Inhalt der QuelleSrinilta, Chutimet, und Suchakree Chatpoch. „Multi-task Learning and Thai Handwritten Text Recognition“. In 2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2020. http://dx.doi.org/10.1109/iceast50382.2020.9165315.
Der volle Inhalt der QuelleZhu, Yuanping, Jun Sun und Satoshi Naoi. „Sub-structure Learning Based Handwritten Chinese Text Recognition“. In 2013 12th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2013. http://dx.doi.org/10.1109/icdar.2013.66.
Der volle Inhalt der QuelleAlkhateeb, Jawad H., Aiman A. Turani und AbdulRahman A. Alsewari. „Performance of Machine Learning and Deep Learning on Arabic Handwritten Text Recognition“. In 2020 Emerging Technology in Computing, Communication and Electronics (ETCCE). IEEE, 2020. http://dx.doi.org/10.1109/etcce51779.2020.9350863.
Der volle Inhalt der QuelleKumar, Gaurav, und Venu Govindaraju. „Bayesian Active Learning for Keyword Spotting in Handwritten Documents“. In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.356.
Der volle Inhalt der Quellede Sousa Neto, Arthur Flor, Byron Leite Dantas Bezerra, Alejandro Hector Toselli und Estanislau Baptista Lima. „HTR-Flor: A Deep Learning System for Offline Handwritten Text Recognition“. In 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE, 2020. http://dx.doi.org/10.1109/sibgrapi51738.2020.00016.
Der volle Inhalt der QuelleWang, Zhen-Xing, Qiu-Feng Wang, Fei Yin und Cheng-Lin Liu. „Weakly Supervised Learning for Over-Segmentation Based Handwritten Chinese Text Recognition“. In 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE, 2020. http://dx.doi.org/10.1109/icfhr2020.2020.00038.
Der volle Inhalt der Quelle