Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Active implantable medical device (AMID)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Active implantable medical device (AMID)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Active implantable medical device (AMID)"
Newaskar, Deepali, und B. P. Patil. „Rechargeable Active Implantable Medical Devices (AIMDs)“. International Journal of Online and Biomedical Engineering (iJOE) 19, Nr. 13 (18.09.2023): 108–19. http://dx.doi.org/10.3991/ijoe.v19i13.41197.
Der volle Inhalt der QuelleJensen, Maria Lund, und Jayme Coates. „Planning Human Factors Engineering for Development of Implantable Medical Devices“. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 7, Nr. 1 (Juni 2018): 156–60. http://dx.doi.org/10.1177/2327857918071037.
Der volle Inhalt der QuelleYOSHINO, Yuuki, und Masao TAKI. „Induced Voltage to an Active Implantable Medical Device by a Near-Field Intra-Body Communication Device“. IEICE Transactions on Communications E94-B, Nr. 9 (2011): 2473–79. http://dx.doi.org/10.1587/transcom.e94.b.2473.
Der volle Inhalt der QuelleWang, Zhichao, Jianfeng Zheng, Yu Wang, Wolfgang Kainz und Ji Chen. „On the Model Validation of Active Implantable Medical Device for MRI Safety Assessment“. IEEE Transactions on Microwave Theory and Techniques 68, Nr. 6 (Juni 2020): 2234–42. http://dx.doi.org/10.1109/tmtt.2019.2957766.
Der volle Inhalt der QuelleWang, Zhichao, Jianfeng Zheng, Yu Wang, Wolfgang Kainz und Ji Chen. „Erratum to “On the Model Validation of Active Implantable Medical Device for MRI Safety Assessment”“. IEEE Transactions on Microwave Theory and Techniques 68, Nr. 6 (Juni 2020): 2469. http://dx.doi.org/10.1109/tmtt.2020.2978595.
Der volle Inhalt der QuelleCrisp, S. „The Medical Device Directives and Their Impact on the Development and Manufacturing of Medical Implants“. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 210, Nr. 4 (Dezember 1996): 233–39. http://dx.doi.org/10.1243/pime_proc_1996_210_419_02.
Der volle Inhalt der QuelleHikage, Takashi, Toshio Nojima und Hiroshi Fujimoto. „Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands“. Physics in Medicine and Biology 61, Nr. 12 (25.05.2016): 4522–36. http://dx.doi.org/10.1088/0031-9155/61/12/4522.
Der volle Inhalt der QuelleEgitto, Frank D., Rabindra N. Das, Glen E. Thomas und Susan Bagen. „Miniaturization of Electronic Substrates for Medical Device Applications“. International Symposium on Microelectronics 2012, Nr. 1 (01.01.2012): 000186–91. http://dx.doi.org/10.4071/isom-2012-ta57.
Der volle Inhalt der QuelleMattei, Eugenio, Giovanni Calcagnini, Federica Censi, Iole Pinto, Andrea Bogi und Rosaria Falsaperla. „Workers with Active Implantable Medical Devices Exposed to EMF: In Vitro Test for the Risk Assessment“. Environments 6, Nr. 11 (15.11.2019): 119. http://dx.doi.org/10.3390/environments6110119.
Der volle Inhalt der QuelleWagner, Marcel Vila, und Thomas Schanze. „Challenges of Medical Device Regulation for Small and Medium sized Enterprises“. Current Directions in Biomedical Engineering 4, Nr. 1 (01.09.2018): 653–56. http://dx.doi.org/10.1515/cdbme-2018-0157.
Der volle Inhalt der QuelleDissertationen zum Thema "Active implantable medical device (AMID)"
Indmeskine, Fatima-Ezahra. „Evaluation et qualification de la fiabilité des composants et des procédés d’assemblages électroniques pour applications médicales“. Electronic Thesis or Diss., Angers, 2024. http://www.theses.fr/2024ANGE0029.
Der volle Inhalt der QuelleElectronics in AIMDs expose patients to risks in case of component failure. Unlike aeronautics, where redundancy is common, AIMDs face constraints like miniaturisation that hinder its application. Additionally, the "medical grade" of components lacks standardization, complicating qualification. The absence of specific standards and limited studies on AIMD environments makes mission profile development challenging. To address this, a state-of-the-art review defined a mission profile integrating environmental constraints critical for reliability tests, as these strongly influence component failures. A methodology based on the mission profile, FMMEA, experimental designs, and accelerated tests was developed to qualify SMD components, including resistors, ceramic capacitors, inductors, and integrated circuits. This solves two key issues: designing efficient accelerated tests to detect latent quality defects and demonstrating reliability aligned with the mission profile. This work is part of the R&D project "RECOME"
Siegel, Alice. „Etude de l’interaction mécanique entre un dispositif médical implantable actif crânien et le crâne face à des sollicitations dynamiques“. Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0012.
Der volle Inhalt der QuelleActive cranial implants are more and more developed to cure neurological diseases. In this context it is necessary to evaluate the mechanical resistance of the skull-implant complex under impact conditions as to ensure the patient’s security. The aim of this study is to quantify the mechanical interactions between the skull and the implant as to develop a finite element model for predictive purpose and for use in cranial implant design methodologies for future implants. First, material tests were necessary to identify the material law parameters of titanium and silicone. They were then used in a finite element model of the implant under dynamic loading, validated against 2.5 J-impact tests. The implant dissipates part of the impact energy and the model enables to optimize the design of implants for it to keep functional and hermetic after the impact. In the third part, a finite element model of the skull-implant complex is developed under dynamic loading. Impact tests on ovine cadaver heads are performed for model validation by enhancing the damage parameters of the three-layered skull and give insight into the behavior of the implanted skull under impact.This model is a primary tool for analyzing the mechanical interaction between the skull and an active implant and enables for an optimized design for functional and hermetic implants, while keeping the skull safe
Bücher zum Thema "Active implantable medical device (AMID)"
Schoenmakers, C. C. W. CE marking for medical devices: A handbook to the medical devices directives : Medical Device Directive 93/42/EEC : the Active Implantable Medical Device Directive 90/396/EEC. New York, NY: Standards Information Network/IEEE Press, 1997.
Den vollen Inhalt der Quelle findenAAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.
Der volle Inhalt der QuelleBuchteile zum Thema "Active implantable medical device (AMID)"
Nahler, Gerhard. „active implantable medical device“. In Dictionary of Pharmaceutical Medicine, 2. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_16.
Der volle Inhalt der QuelleBrown, James E., Rui Qiang, Paul J. Stadnik, Larry J. Stotts und Jeffrey A. Von Arx. „RF-Induced Unintended Stimulation for Implantable Medical Devices in MRI“. In Brain and Human Body Modeling 2020, 283–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_17.
Der volle Inhalt der QuelleBrown, James E., Paul J. Stadnik, Jeffrey A. Von Arx und Dirk Muessig. „RF-induced Heating Near Active Implanted Medical Devices in MRI: Impact of Tissue Simulating Medium“. In Brain and Human Body Modelling 2021, 125–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_8.
Der volle Inhalt der Quelle„The Active Implantable Medical Device Directive (AIMDD)“. In International Labeling Requirements for Medical Devices, Medical Equipment and Diagnostic Products, 273–84. CRC Press, 2003. http://dx.doi.org/10.1201/9780203488393-30.
Der volle Inhalt der Quelle„The Active Implantable Medical Device Directive (AIMDD)“. In International Labeling Requirements for Medical Devices, Medical Equipment and Diagnostic Products. Informa Healthcare, 2003. http://dx.doi.org/10.1201/9780203488393.ch16.
Der volle Inhalt der Quelle„5: General requirements for non-implantable parts“. In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch5.
Der volle Inhalt der QuelleRen, Tingting, Meina Fang, Han Luo, Lingjian Zeng und Cheng Zeng. „Study on Calibration of Extracorporeal Pacemaker“. In Studies in Health Technology and Informatics. IOS Press, 2023. http://dx.doi.org/10.3233/shti230869.
Der volle Inhalt der Quelle„9: Protection from harm to the patient caused by gradient-induced device heating“. In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch9.
Der volle Inhalt der Quelle„15: Protection from harm to the patient caused by RF-induced malfunction and RF rectification“. In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch15.
Der volle Inhalt der Quelle„10: Protection from harm to the patient caused by gradient-induced vibration“. In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Active implantable medical device (AMID)"
Nelson, Jody J., Wes Clement, Brian Martel, Richard Kautz und Katarina H. Nelson. „Assessment of active implantable medical device interaction in hybrid electric vehicles“. In 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652064.
Der volle Inhalt der QuelleCampi, Tommaso, Silvano Cruciani, Mauro Feliziani und Akimasa Hirata. „Wireless power transfer system applied to an active implantable medical device“. In 2014 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2014. http://dx.doi.org/10.1109/wpt.2014.6839612.
Der volle Inhalt der QuelleGas, Piotr, und Arkadiusz Miaskowski. „A Heating from a Standard Active Implantable Medical Device under MRI Exposure“. In 2019 15th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE, 2019. http://dx.doi.org/10.1109/wzee48932.2019.8979783.
Der volle Inhalt der QuelleChang, Jiajun, Qianlong Lan, Ran Guo, Jianfeng Zheng, Ji Chen und Wolfgang Kainz. „Prediction of Active Implantable Medical Device Electromagnetic Models Using a Neural Network“. In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704511.
Der volle Inhalt der QuelleLong, Tiangang, Changqing Jiang und Luming Li. „Electrode Sensitivity for MRI-RF Induced Heating Evaluation of Active Implantable Medical Device“. In 2023 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). IEEE, 2023. http://dx.doi.org/10.1109/imbioc56839.2023.10305093.
Der volle Inhalt der QuelleHikage, T., Y. Kawamura, T. Nojima, B. Koike, H. Fujimoto und T. Toyoshima. „Active implantable medical device EMI assessments for electromagnetic emitters operating in various RF bands“. In 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS 2011). IEEE, 2011. http://dx.doi.org/10.1109/imws.2011.5877102.
Der volle Inhalt der QuelleGuo, Ran, Jianfeng Zheng, Zhichao Wang, Rui Yang, Ji Chen und Thomas Hoegh. „Reducing the Radiofrequency-Induced Heating of Active Implantable Medical Device with Load Impedance Modification“. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9329822.
Der volle Inhalt der QuelleHikage, Takashi, Yoshifumi Kawamura und Toshio Nojima. „Numerical estimation methodology for RFID/Active Implantable Medical Device-EMI based upon FDTD analysis“. In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6051331.
Der volle Inhalt der QuelleZhao, Y. X., J. Chen, J. Y. Zhang, L. H. Li und C. Lin. „Testing based on cyclomatic complexity analysis in software development of active implantable medical device“. In International Conference on Automation, Mechanical and Electrical Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/amee141042.
Der volle Inhalt der QuelleHu, Wei, Yu Wang, Qingyan Wang, Md Zahidul Islam, Jeffrey Tsang, Wolfgang Kainz und Ji Chen. „RF-Induced Heating for Active Implantable Medical Device with Dual Parallel Leads under MRI“. In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704099.
Der volle Inhalt der Quelle