Zeitschriftenartikel zum Thema „Activation de la liaison C(sp2)-H“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Activation de la liaison C(sp2)-H.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Activation de la liaison C(sp2)-H" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Wencel-Delord, Joanna, und Françoise Colobert. „Asymmetric C(sp2)H Activation“. Chemistry - A European Journal 19, Nr. 42 (17.09.2013): 14010–17. http://dx.doi.org/10.1002/chem.201302576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wencel-Delord, Joanna, und Francoise Colobert. „ChemInform Abstract: Asymmetric C(sp2)-H Activation“. ChemInform 45, Nr. 2 (19.12.2013): no. http://dx.doi.org/10.1002/chin.201402241.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bakthadoss, Manickam, Tadiparthi Thirupathi Reddy, Vishal Agarwal und Duddu S. Sharada. „Ester-directed orthogonal dual C–H activation and ortho aryl C–H alkenylation via distal weak coordination“. Chemical Communications 58, Nr. 9 (2022): 1406–9. http://dx.doi.org/10.1039/d1cc06097j.

Der volle Inhalt der Quelle
Annotation:
An orthogonal cross-coupling between aromatic C(sp2) and aliphatic olefinic C(sp2) carbons of two same molecules via dual C–H activation and ortho C–H olefination with various alkenes via distal ester directing group has been developed for the first time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dutta, Uttam, Sudip Maiti, Trisha Bhattacharya und Debabrata Maiti. „Arene diversification through distal C(sp2)−H functionalization“. Science 372, Nr. 6543 (13.05.2021): eabd5992. http://dx.doi.org/10.1126/science.abd5992.

Der volle Inhalt der Quelle
Annotation:
Transition metal–catalyzed aryl C−H activation is a powerful synthetic tool as it offers step and atom-economical routes to site-selective functionalization. Compared with proximal ortho-C−H activation, distal (meta- and/or para-) C−H activation remains more challenging due to the inaccessibility of these sites in the formation of energetically favorable organometallic pretransition states. Directing the catalyst toward the distal C−H bonds requires judicious template engineering and catalyst design, as well as prudent choice of ligands. This review aims to summarize the recent elegant discoveries exploiting directing group assistance, transient mediators or traceless directors, noncovalent interactions, and catalyst and/or ligand selection to control distal C−H activation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Yanghui, Bo Zhou und Ailan Lu. „Pd-Catalyzed C–H Silylation Reactions with Disilanes“. Synlett 30, Nr. 06 (18.12.2018): 685–93. http://dx.doi.org/10.1055/s-0037-1610339.

Der volle Inhalt der Quelle
Annotation:
Pd-catalyzed C–H silylation reactions remain underdeveloped. General strategies usually rely on the use of complex bidentate directing groups. C,C-Palladacycles exhibit extremely high reactivity towards hexamethyldisilane and can be disilylated very efficiently. The C,C-palladacycles are prepared through halide-directed C–H activation. This account introduces Pd-catalyzed C–H silylation reactions with di­silanes as the silyl source, and is focused on studies on the silylation of C,C-palladacycles.1 Introduction and Background2 Allylic C–H Silylation Reaction3 Coordinating-Ligand-Directed C–H Silylation Reaction4 Disilylation of C(sp2),C(sp2)-Palladacycles That are Generated by C(sp2)–H activation5 Disilylation of C(sp2),C(sp3)-Palladacycles That are Generated by C(sp3)–H Activation6 Disilylation of C,C-Palladacycles That are Generated through Domino Processes7 Summary and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Britton, Luke, Jamie H. Docherty, Andrew P. Dominey und Stephen P. Thomas. „Iron-Catalysed C(sp2)-H Borylation Enabled by Carboxylate Activation“. Molecules 25, Nr. 4 (18.02.2020): 905. http://dx.doi.org/10.3390/molecules25040905.

Der volle Inhalt der Quelle
Annotation:
Arene C(sp2)-H bond borylation reactions provide rapid and efficient routes to synthetically versatile boronic esters. While iridium catalysts are well established for this reaction, the discovery and development of methods using Earth-abundant alternatives is limited to just a few examples. Applying an in situ catalyst activation method using air-stable and easily handed reagents, the iron-catalysed C(sp2)-H borylation reactions of furans and thiophenes under blue light irradiation have been developed. Key reaction intermediates have been prepared and characterised, and suggest two mechanistic pathways are in action involving both C-H metallation and the formation of an iron boryl species.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Geng, Cuihuan, Sujuan Zhang, Chonggang Duan, Tongxiang Lu, Rongxiu Zhu und Chengbu Liu. „Theoretical investigation of gold-catalyzed oxidative Csp3–Csp2 bond formation via aromatic C–H activation“. RSC Advances 5, Nr. 97 (2015): 80048–56. http://dx.doi.org/10.1039/c5ra16359e.

Der volle Inhalt der Quelle
Annotation:
The mechanisms of Selectfluor-mediated homogeneous Au-catalyzed intramolecular Csp3–Csp2 cross-coupling reaction involving direct aryl Csp2–H functionalization has been investigated theoretically.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Song, Liangliang, Guilong Tian, Johan Van der Eycken und Erik V. Van der Eycken. „Intramolecular cascade annulation triggered by rhodium(III)-catalyzed sequential C(sp2)–H activation and C(sp3)–H amination“. Beilstein Journal of Organic Chemistry 15 (27.02.2019): 571–76. http://dx.doi.org/10.3762/bjoc.15.52.

Der volle Inhalt der Quelle
Annotation:
A rhodium(III)-catalyzed intramolecular oxidative annulation of O-substituted N-hydroxyacrylamides for the construction of indolizinones via sequential C(sp2)–H activation and C(sp3)–H amination has been developed. This approach shows excellent functional-group tolerance. The synthesized scaffold forms the core of many natural products with pharmacological relevance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Moghimi, Setareh, Mohammad Mahdavi, Abbas Shafiee und Alireza Foroumadi. „Transition-Metal-Catalyzed Acyloxylation: Activation of C(sp2)-H and C(sp3)-H Bonds“. European Journal of Organic Chemistry 2016, Nr. 20 (19.06.2016): 3282–99. http://dx.doi.org/10.1002/ejoc.201600138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dhara, Shubhendu, Raju Singha, Atiur Ahmed, Haridas Mandal, Munmun Ghosh, Yasin Nuree und Jayanta K. Ray. „Synthesis of α, β and γ-carbolines via Pd-mediated Csp2-H/N–H activation“. RSC Adv. 4, Nr. 85 (2014): 45163–67. http://dx.doi.org/10.1039/c4ra08457h.

Der volle Inhalt der Quelle
Annotation:
An efficient method for the synthesis of halo-carbolines has been developed via Pd-catalysed formation of C–N bonds through Csp2-H/N–H activation of 4-methyl-N-[2-(pyridine-3-yl)phenyl] benzenesulfonamide derivatives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Shin, Seohyun, Dongjin Kang, Woo Hyung Jeon und Phil Ho Lee. „Synthesis of ethoxy dibenzooxaphosphorin oxides through palladium-catalyzed C(sp2)–H activation/C–O formation“. Beilstein Journal of Organic Chemistry 10 (23.05.2014): 1220–27. http://dx.doi.org/10.3762/bjoc.10.120.

Der volle Inhalt der Quelle
Annotation:
We report an efficient Pd-catalyzed C(sp2)–H activation/C–O bond formation for the synthesis of ethoxy dibenzooxaphosphorin oxides from 2-(aryl)arylphosphonic acid monoethyl esters under aerobic conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zhang, Hongyu, und Shangdong Yang. „Palladium-catalyzed R2(O)P-directed C(sp2)-H activation“. Science China Chemistry 58, Nr. 8 (15.04.2015): 1280–85. http://dx.doi.org/10.1007/s11426-015-5382-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sahoo, Sumeet Ranjan, Subhabrata Dutta, Shaeel A. Al-Thabaiti, Mohamed Mokhtar und Debabrata Maiti. „Transition metal catalyzed C–H bond activation by exo-metallacycle intermediates“. Chemical Communications 57, Nr. 90 (2021): 11885–903. http://dx.doi.org/10.1039/d1cc05042g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sun, Qiao, und Naohiko Yoshikai. „Cobalt-catalyzed C(sp2)–H/C(sp3)–H coupling via directed C–H activation and 1,5-hydrogen atom transfer“. Organic Chemistry Frontiers 5, Nr. 4 (2018): 582–85. http://dx.doi.org/10.1039/c7qo00906b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Li, Guang-Hui, Dao-Qing Dong, Xian-Yong Yu und Zu-Li Wang. „Direct synthesis of 8-acylated quinoline N-oxidesviapalladium-catalyzed selective C–H activation and C(sp2)–C(sp2) cleavage“. New Journal of Chemistry 43, Nr. 4 (2019): 1667–70. http://dx.doi.org/10.1039/c8nj05374j.

Der volle Inhalt der Quelle
Annotation:
An efficient method for the synthesis of 8-acylated quinoline N-oxides from the reaction of quinoline N-oxides with α-diketonesviaC–C bond cleavage was developed. A variety of quinoline N-oxides and α-diketones with different groups was well tolerated in this system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Park, Ji Eun, und Youn K. Kang. „Evidence of a Wheland Intermediate in Carboxylate-Assisted C(sp2)−H Activation by Pd(IV) Active Catalyst Species Studied via DFT Calculations“. Catalysts 13, Nr. 4 (11.04.2023): 724. http://dx.doi.org/10.3390/catal13040724.

Der volle Inhalt der Quelle
Annotation:
Evidence of a Wheland intermediate in carboxylate-assisted C−H activation was found using DFT calculations when the Pd(IV) catalyst species was postulated as the active catalyst species (ACS). In order to delineate the reaction mechanism of Pd-catalyzed bisarylation of 3-alkylbenzofuran, five hypothetical catalyst species, [Pd(OAc)(PMe3)(Ph)] (I), [Pd(OAc)2] (II), [Pd(OAc)2(PMe3)] (III), [Pd(OAc)2(Ph)]+ (IV) and [Pd(OAc)2(PMe3)(Ph)]+ (V) were tested as potential ACS candidates. The catalyst species I, previously reported as an ACS in the context of ambiphilic metal−ligand assistance or a concerted metalation-deprotonation mechanism, was unsuccessful, with maximum activation barriers (ΔG‡max) for the C(sp2)−H and C(sp3)−H activations of 33.3 and 51.4 kcal/mol, respectively. The ΔG‡max values for the C(sp2)−H and C(sp3)−H activations of II−V were 23.8/28.7, 32.0/49.6, 10.9/10.9, and 36.0/36.0 kcal/mol, respectively, indicating that ACS is likely IV. This catalyst species forms an intermediate state (IV_1) before proceeding to the transition state (IV_TS1,2) for C(sp2)−H activation, in which C(2) atom of 3-methylbenzofuran has a substantial σ-character. The degree of σ-character of the IV_1 state was further evaluated quantitatively in terms of geometric parameters, partial charge distribution, and activation strain analysis. The analysis results support the existence of a Wheland intermediate, which has long been recognized as the manifestation of the electrophilic aromatic substitution mechanism yet never been identified computationally.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Wang, Xiao, Ming-Zhu Lu und Teck-Peng Loh. „Transition-Metal-Catalyzed C–C Bond Macrocyclization via Intramolecular C–H Bond Activation“. Catalysts 13, Nr. 2 (17.02.2023): 438. http://dx.doi.org/10.3390/catal13020438.

Der volle Inhalt der Quelle
Annotation:
Macrocycles are commonly synthesized via late-stage macrolactamization and macrolactonization. Strategies involving C–C bond macrocyclization have been reported, and examples include the transition-metal-catalyzed ring-closing metathesis and coupling reactions. In this mini-review, we summarize the recent progress in the direct synthesis of polyketide and polypeptide macrocycles using a transition-metal-catalyzed C–H bond activation strategy. In the first part, rhodium-catalyzed alkene–alkene ring-closing coupling for polyketide synthesis is described. The second part summarizes the synthesis of polypeptide macrocycles. The activation of indolyl and aryl C(sp2)–H bonds followed by coupling with various coupling partners such as aryl halides, arylates, and alkynyl bromide is then documented. Moreover, transition-metal-catalyzed C–C bond macrocyclization reactions via alkyl C(sp3)–H bond activation are also included. We hope that this mini-review will inspire more researchers to explore new and broadly applicable strategies for C–C bond macrocyclization via intramolecular C–H activation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Valentini, Federica, Oriana Piermatti und Luigi Vaccaro. „Metal and Metal Oxide Nanoparticles Catalyzed C–H Activation for C–O and C–X (X = Halogen, B, P, S, Se) Bond Formation“. Catalysts 13, Nr. 1 (22.12.2022): 16. http://dx.doi.org/10.3390/catal13010016.

Der volle Inhalt der Quelle
Annotation:
The direct functionalization of an inactivated C–H bond has become an attractive approach to evolve toward step-economy, atom-efficient and environmentally sustainable processes. In this regard, the design and preparation of highly active metal nanoparticles as efficient catalysts for C–H bond activation under mild reaction conditions still continue to be investigated. This review focuses on the functionalization of un-activated C(sp3)–H, C(sp2)–H and C(sp)–H bonds exploiting metal and metal oxide nanoparticles C–H activation for C–O and C–X (X = Halogen, B, P, S, Se) bond formation, resulting in more sustainable access to industrial production.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Zucca, Antonio, Sergio Stoccoro, Maria Agostina Cinellu, Giovanni Minghetti und Mario Manassero. „Cyclometallated derivatives of rhodium(III). Activation of C(sp3)–H vs. C(sp2)–H bonds“. Journal of the Chemical Society, Dalton Transactions, Nr. 19 (1999): 3431–37. http://dx.doi.org/10.1039/a903614h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Prajapati, Ramanand, Ajay Kant Gola, Amrendra Kumar, Shubham Jaiswal und Narender Tadigoppula. „o-Acetoxylation of oxo-benzoxazines via C–H activation by palladium(ii)/aluminium oxide“. New Journal of Chemistry 46, Nr. 12 (2022): 5719–24. http://dx.doi.org/10.1039/d2nj00134a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Maraswami, Manikantha, und Teck-Peng Loh. „Transition-Metal-Catalyzed Alkenyl sp2 C–H Activation: A Short Account“. Synthesis 51, Nr. 05 (23.01.2019): 1049–62. http://dx.doi.org/10.1055/s-0037-1611649.

Der volle Inhalt der Quelle
Annotation:
Alkenes are ubiquitous in Nature and their functionalization continues to attract attention from the scientific community. On the other hand, activation of alkenyl sp2 C–H bonds is challenging due to their chemical properties. In this short account, we elucidate, discuss and describe the utilization of transition-metal catalysts in alkene activation and provide useful strategies to synthesize organic building blocks in an efficient and sustainable manner.1 Introduction2 Breakthrough3 Controlling E/Z, Z/E Selectivity3.1 Esters and Amides as Directing Groups3.2 The Chelation versus Non-Chelation Concept4 Other Alkene Derivatives5 Intramolecular C–H Activation6 Conclusion and Future Projects
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Uttry, Alexander, und Manuel van Gemmeren. „Direct C(sp3)–H Activation of Carboxylic Acids“. Synthesis 52, Nr. 04 (17.10.2019): 479–88. http://dx.doi.org/10.1055/s-0039-1690720.

Der volle Inhalt der Quelle
Annotation:
Carboxylic acids are important in a variety of research fields and applications. As a result, substantial efforts have been directed towards the C–H functionalization of such compounds. While the use of the carboxylic acid moiety as a native directing group for C(sp2)–H functionalization reactions is well established, as yet there is no general solution for the C(sp3)–H activation of aliphatic carboxylic acids and most endeavors have instead relied on the introduction of stronger directing groups. Recently however, novel ligands, tools, and strategies have emerged, which enable the use of free aliphatic carboxylic acids in C–H-activation-based transformations.1 Introduction2 Challenges in the C(sp3)–H Bond Activation of Carboxylic Acids3 The Lactonization of Aliphatic Carboxylic Acids4 The Directing Group Approach5 The Direct C–H Arylation of Aliphatic Carboxylic Acids6 The Direct C–H Olefination of Aliphatic Carboxylic Acids7 The Direct C–H Acetoxylation of Aliphatic Carboxylic Acids8 Summary
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bettadapur, Kiran R., Veeranjaneyulu Lanke und Kandikere Ramaiah Prabhu. „A deciduous directing group approach for the addition of aryl and vinyl nucleophiles to maleimides“. Chemical Communications 53, Nr. 46 (2017): 6251–54. http://dx.doi.org/10.1039/c7cc02392h.

Der volle Inhalt der Quelle
Annotation:
A Rh(iii)-catalyzed C–H activation followed by conjugate addition to maleimides, using carboxylic acid as a traceless/deciduous directing group, to formally furnish a Csp2–Csp3 bond is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Liu, Weidong, Qingzhen Yu, Le'an Hu, Zenghua Chen und Jianhui Huang. „Modular synthesis of dihydro-isoquinolines: palladium-catalyzed sequential C(sp2)–H and C(sp3)–H bond activation“. Chemical Science 6, Nr. 10 (2015): 5768–72. http://dx.doi.org/10.1039/c5sc01482d.

Der volle Inhalt der Quelle
Annotation:
An efficient synthesis of dihydro-isoquinolines via a Pd–catalyzed double C–H bond activation/annulation featuring a short reaction time, high atom economy and the formation of a sterically less favoured tertiary C–N bond.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Seth, Kapileswar, Manesh Nautiyal, Priyank Purohit, Naisargee Parikh und Asit K. Chakraborti. „Palladium catalyzed Csp2–H activation for direct aryl hydroxylation: the unprecedented role of 1,4-dioxane as a source of hydroxyl radicals“. Chemical Communications 51, Nr. 1 (2015): 191–94. http://dx.doi.org/10.1039/c4cc06864e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Verma, Ashish Kumar, Ande Chennaiah, Sateesh Dubbu und Yashwant D. Vankar. „Palladium catalyzed synthesis of sugar-fused indolines via C(sp2)–H/N H activation“. Carbohydrate Research 473 (Februar 2019): 57–65. http://dx.doi.org/10.1016/j.carres.2018.12.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Klare, Hendrik F. T. „Catalytic C–H Arylation of Unactivated C–H Bonds by Silylium Ion-Promoted C(sp2)–F Bond Activation“. ACS Catalysis 7, Nr. 10 (20.09.2017): 6999–7002. http://dx.doi.org/10.1021/acscatal.7b02658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Cheng, Huiling, Yubo Jiang, Jianhua Yang, Fen Zhao, Yaowen Liu und Fang Luo. „Selective Diacetoxylation of Disubstituted 1,2,3-Triazoles through Palladium-Catalyzed C–H Activation“. Synlett 29, Nr. 10 (12.04.2018): 1373–78. http://dx.doi.org/10.1055/s-0036-1591564.

Der volle Inhalt der Quelle
Annotation:
A simple and efficient selective diacetoxylation of 1,4-disubstituted 1,2,3-triazoles by Pd-catalyzed C–H bond activation is described. PhI(OAc)2 was used as an acetyloxy source to convert aromatic sp2 C–H bonds into C–O bonds with high selectivity by employing a 1,2,3-triazole ring as an elegant directing group. A range of 1,2,3-triazoles bearing two acetyloxy groups can be readily synthesized by the reaction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Liu, Yunqi, Yudong Yang, Chunxia Wang, Zhishuo Wang und Jingsong You. „Rhodium(iii)-catalyzed regioselective oxidative annulation of anilines and allylbenzenes via C(sp3)–H/C(sp2)–H bond cleavage“. Chemical Communications 55, Nr. 8 (2019): 1068–71. http://dx.doi.org/10.1039/c8cc09099h.

Der volle Inhalt der Quelle
Annotation:
As a proof-of-concept, we disclose the rhodium-catalyzed oxidative annulation of anilines with allylbenzenes to afford a variety of indoles, in which the allylic C(sp3)–H activation and directed C(sp2)–H activation are merged into a single approach for the first time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhang, Yanghui, und Bin Wan. „Synthesis of Unsymmetrically Substituted Tetraphenylenes through Palladium-Catalyzed C(sp2)–H Activation“. Synthesis 53, Nr. 18 (08.03.2021): 3299–306. http://dx.doi.org/10.1055/a-1416-9737.

Der volle Inhalt der Quelle
Annotation:
AbstractAn efficient protocol for the palladium-catalyzed cross-coupling reaction of 2-iodobiphenyls with biphenylene has been developed through C–H activation. The reaction provides a simple and efficient method for the synthesis of unsymmetrically substituted tetra­phenylenes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Curto, John M., und Marisa C. Kozlowski. „Chemoselective Activation of sp3 vs sp2 C–H Bonds with Pd(II)“. Journal of the American Chemical Society 137, Nr. 1 (29.12.2014): 18–21. http://dx.doi.org/10.1021/ja5093166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Li, Bin, und Pierre H. Dixneuf. „sp2 C–H bond activation in water and catalytic cross-coupling reactions“. Chemical Society Reviews 42, Nr. 13 (2013): 5744. http://dx.doi.org/10.1039/c3cs60020c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Song, Juan, Yali Li, Wei Sun, Chenglong Yi, Hao Wu, Haotian Wang, Keran Ding, Kang Xiao und Chao Liu. „Efficient palladium-catalyzed C(sp2)–H activation towards the synthesis of fluorenes“. New Journal of Chemistry 40, Nr. 11 (2016): 9030–33. http://dx.doi.org/10.1039/c6nj02033j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Dai, Hui-Xiong, Ming Shang, Shang-Zheng Sun, Hong-Li Wang und Ming-Ming Wang. „Recent Progress on Copper-Mediated Directing-Group-Assisted C(sp2)–H Activation“. Synthesis 48, Nr. 24 (09.09.2016): 4381–99. http://dx.doi.org/10.1055/s-0035-1562795.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Kathiravan, Subban, und Ian A. Nicholls. „Cobalt Catalyzed, Regioselective C(sp2)–H Activation of Amides with 1,3-Diynes“. Organic Letters 19, Nr. 18 (28.08.2017): 4758–61. http://dx.doi.org/10.1021/acs.orglett.7b02119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Gu, Zheng-Yang, Cheng-Guo Liu, Shun-Yi Wang und Shun-Jun Ji. „Cobalt-Catalyzed Annulation of Amides with Isocyanides via C(sp2)–H Activation“. Journal of Organic Chemistry 82, Nr. 4 (08.02.2017): 2223–30. http://dx.doi.org/10.1021/acs.joc.6b02797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Tian, Qingshan, Xianmin Chen, Wei Liu, Zechao Wang, Suping Shi und Chunxiang Kuang. „Regioselective halogenation of 2-substituted-1,2,3-triazoles via sp2 C–H activation“. Organic & Biomolecular Chemistry 11, Nr. 45 (2013): 7830. http://dx.doi.org/10.1039/c3ob41558a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wang, Yong, und Qiang Zhu. „Palladium(II)-Catalyzed Cycloamidination via C(sp2)H Activation and Isocyanide Insertion“. Advanced Synthesis & Catalysis 354, Nr. 10 (29.06.2012): 1902–8. http://dx.doi.org/10.1002/adsc.201200106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Tang, Ren-Jin, Cui-Ping Luo, Luo Yang und Chao-Jun Li. „Rhodium(III)-Catalyzed C(sp2)H Activation and Electrophilic Amidation withN-Fluorobenzenesulfonimide“. Advanced Synthesis & Catalysis 355, Nr. 5 (22.02.2013): 869–73. http://dx.doi.org/10.1002/adsc.201201133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Cizikovs, Aleksandrs, und Liene Grigorjeva. „Co(III) Intermediates in Cobalt-Catalyzed, Bidentate Chelation Assisted C(sp2)-H Functionalizations“. Inorganics 11, Nr. 5 (29.04.2023): 194. http://dx.doi.org/10.3390/inorganics11050194.

Der volle Inhalt der Quelle
Annotation:
The C-H bond activation and functionalization is a powerful tool that provides efficient access to various organic molecules. The cobalt-catalyzed oxidative C-H bond activation and functionalization has earned enormous interest over the past two decades. Since then, a wide diversity of synthetic protocols have been published for C-C, C-Het, and C-Hal bond formation reactions. To gain some insights into the reaction mechanism, the authors performed a series of experiments and collected evidence. Several groups have successfully isolated reactive Co(III) intermediates to elucidate the reaction mechanism. In this review, we will summarize information concerning the isolated and synthesized Co(III) intermediates in cobalt-catalyzed, bidentate chelation assisted C-H bond functionalization and their reactivity based on the current knowledge about the general reaction mechanism.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Pashazadeh, Rahim, Saideh Rajai-Daryasarei, Siyavash Mirzaei, Mehdi Soheilizad, Samira Ansari und Meisam Shabanian. „A Regioselective Approach to C3-Aroylcoumarins via Cobalt-Catalyzed­ C(sp2)–H Activation Carbonylation of Coumarins“. Synthesis 51, Nr. 15 (02.04.2019): 3014–20. http://dx.doi.org/10.1055/s-0037-1610702.

Der volle Inhalt der Quelle
Annotation:
A new cobalt-catalyzed C–H bond activation of coumarins with aryl halides or pseudohalides and carbon monoxide insertion to give various 3-aroylcoumarin derivatives is described. It is the first time that CO as C1 feedstock is used as the coupling partners in cobalt-catalyzed regioselective coumarin C–H functionalization reactions. Upon activation with manganese powder, the Co catalyzes the C–H bond activation carbonylation reactions of aryl iodides, bromides, and even triflates under mild conditions, providing the regioselective aroylated products in moderate to good yields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Swamy, V. S. V. S. N., Nasrina Parvin, K. Vipin Raj, Kumar Vanka und Sakya S. Sen. „C(sp3)–F, C(sp2)–F and C(sp3)–H bond activation at silicon(ii) centers“. Chemical Communications 53, Nr. 71 (2017): 9850–53. http://dx.doi.org/10.1039/c7cc05145j.

Der volle Inhalt der Quelle
Annotation:
Silylene, [PhC(NtBu)2SiN(SiMe3)2] (1) underwent C(sp3)–F, C(sp2)–F and C(sp3)–H bond activation with trifluoroacetophenone, octafluorotoluene, and acetophenone, respectively, under ambient conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Fujihara, Tetsuaki, Yutaka Tanji und Yasushi Tsuji. „Palladium-Catalyzed Synthesis of Fluorenes by Intramolecular C(sp2)–H Activation at Room Temperature“. Synlett 31, Nr. 08 (04.02.2020): 805–8. http://dx.doi.org/10.1055/s-0039-1690812.

Der volle Inhalt der Quelle
Annotation:
The synthesis of fluorenes by intramolecular Pd-catalyzed C(sp2)–H activation of 2-arylbenzyl chlorides was conducted at room temperature by using commercially available triphenylphosphine and pivalic acid as ligands. The desired reactions proceeded efficiently at room temperature, and various substrates were converted into the corresponding fluorene derivatives in excellent yields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Konwar, Manashjyoti, Roktopol Hazarika und Diganta Sarma. „Synthetic advances in C(sp2)-H/N–H arylation of pyrazole derivatives through activation/substitution“. Tetrahedron 102 (Dezember 2021): 132504. http://dx.doi.org/10.1016/j.tet.2021.132504.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Young, Michael, Mohit Kapoor, Pratibha Chand-Thakuri, Justin Maxwell, Daniel Liu und Hanyang Zhou. „Carbon Dioxide-Driven Palladium-Catalyzed C–H Activation of Amines: A Unified Approach for the Arylation of Aliphatic and Aromatic Primary and Secondary Amines“. Synlett 30, Nr. 05 (08.01.2019): 519–24. http://dx.doi.org/10.1055/s-0037-1611381.

Der volle Inhalt der Quelle
Annotation:
Amines are an important class of compounds in organic chemistry and serve as an important motif in various industries, including pharmaceuticals, agrochemicals, and biotechnology. Several methods have been developed for the C–H functionalization of amines using various directing groups, but functionalization of free amines remains a challenge. Here, we discuss our recently developed carbon dioxide driven highly site-selective γ-arylation of alkyl- and benzylic amines via a palladium-catalyzed C–H bond-activation process. By using carbon dioxide as an inexpensive, sustainable, and transient directing group, a wide variety of amines were arylated at either γ-sp3 or sp2 carbon–hydrogen bonds with high selectivity based on substrate and conditions. This newly developed strategy provides straightforward access to important scaffolds in organic and medicinal chemistry without the need for any expensive directing groups.1 Introduction2 C(sp3)–H Arylation of Aliphatic Amines3 C(sp2)–H Arylation of Benzylamines4 Mechanistic Questions5 Future Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Zhou, Wei, Hongji Li und Lei Wang. „Direct Carbo-Acylation Reactions of 2-Arylpyridines with α-Diketones via Pd-Catalyzed C–H Activation and Selective C(sp2)–C(sp2) Cleavage“. Organic Letters 14, Nr. 17 (27.08.2012): 4594–97. http://dx.doi.org/10.1021/ol3020557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kim, Daeun, Geunho Choi, Weonjeong Kim, Dongwook Kim, Youn K. Kang und Soon Hyeok Hong. „The site-selectivity and mechanism of Pd-catalyzed C(sp2)–H arylation of simple arenes“. Chemical Science 12, Nr. 1 (2021): 363–73. http://dx.doi.org/10.1039/d0sc05414c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Li, Dan-Dan, Yi-Xuan Cao und Guan-Wu Wang. „Palladium-catalyzed ortho-acyloxylation of N-nitrosoanilines via direct sp2 C–H bond activation“. Organic & Biomolecular Chemistry 13, Nr. 25 (2015): 6958–64. http://dx.doi.org/10.1039/c5ob00691k.

Der volle Inhalt der Quelle
Annotation:
The palladium-catalyzed N-nitroso-directed ortho-acyloxylation of N-nitrosoanilines has been demonstrated via sp2 C–H activation with PhI(OAc)2 as the oxidant and Ac2O/AcOH (1 : 1) or C2H5CO2H as the reaction medium.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Arevalo, Rebeca, Tyler P. Pabst und Paul J. Chirik. „C(sp2)–H Borylation of Heterocycles by Well-Defined Bis(silylene)pyridine Cobalt(III) Precatalysts: Pincer Modification, C(sp2)–H Activation, and Catalytically Relevant Intermediates“. Organometallics 39, Nr. 14 (08.07.2020): 2763–73. http://dx.doi.org/10.1021/acs.organomet.0c00382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Hu, Zhe-Yao, Yan Zhang, Xin-Chang Li, Jing Zi und Xun-Xiang Guo. „Pd-Catalyzed Intramolecular Chemoselective C(sp2)–H and C(sp3)–H Activation of N-Alkyl-N-arylanthranilic Acids“. Organic Letters 21, Nr. 4 (29.01.2019): 989–92. http://dx.doi.org/10.1021/acs.orglett.8b03976.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie